
Documentation - Query method naming conventions

Page 1 - Last modified on August 15, 2012 17:21

Contents

• The client query
• Finding the server-side query method
• Query naming conventions
• Using the Query Attribute
• Other discoverability requirements

When the EntityServer receives a client query request, it looks on the server for a corresponding query method such as a
named query or POCO query method. It recognizes a server-side query method by its signature and name. This topic explains
the DevForce query method naming convention and how to use the QueryAttribute when you can't follow the convention.

The client query
At the root of a client EntityQuery is the name of the EntitySet that identifies the domain of entities to query. Here is an example
client query for Customers. 

C#var query = new EntityQuery<Customer>("Customers", anEntityManager).Where(...);

VBDim query = New EntityQuery(Of Customer)("Customers", anEntityManager).Where(...)

"Customers" is the name of EntitySet for the Customer entity type.

The more familiar anEntityManager.Customers() property returns an EntityQuery that is defined in precisely this way.

If your query depends upon a specialized named query, the EntitySet name will be something else. It might be
"GoldCustomers" if you've defined a named query that implements that concept.

Finding the server-side query method
When the EntityServer receives that client query, it looks for a method on the server that corresponds to the EntityQuery's
EntitySet name. 

If it can't find a corresponding query method on the server there could be trouble. In most cases the EntityServer throws an
exception reporting its inability to find a method to go with the requested EntitySet name.

There is one exception. The EntityServer can muddle through if the query's EntitySet name matches the EntitySet name of an
Entity Framework entity type. Because "Customers" is the name of the EntitySet for the Customer EF type, DevForce doesn't
have to find a matching query method on the server. It will try to find a server-side method ... but it can proceed without one.

That's why you do not have to write a default named query method. If you do write a default named query method, make sure
DevForce can find it by following the rules described here.

If you wrote a server-side query method, you must help DevForce find it, either by naming the method in a way that
conforms to DevForce conventions or by marking it with the DevForce Query attribute.

Query naming conventions
DevForce can interpret query method names that begin with any one of the following prefixes:

Prefix   Method name example   Matching EntitySet name

Get   GetCustomers   Customers

Query   QueryCustomers   Customers

Fetch   FetchGoldCustomers   GoldCustomers

Retrieve   RetrieveStates   States

Find   FindWaldo   Waldo

Select   SelectCandidates   Candidates

Using the Query Attribute
You don't have to follow the DevForce conventions when naming a specialized named query or POCO query. 

You must follow the DevForce convention when naming the default named query method.

You can name the query method as you please as long as you adorn it with the Query  attribute.

C#[Query]

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco-serviceprovider-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/specialized-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/default-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/specialized-named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco-serviceprovider-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/default-named-query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.QueryAttribute.html


Documentation - Query method naming conventions

Page 2 - Last modified on August 15, 2012 17:21

public IQueryable<Customer> ReturnAllCustomers() { ... }
[Query]
public IQueryable<Customer> GrabMeSomeGoldCustomers() { ... }
[Query]
public IEnumerable<State>   BringBackTheStates() { ... }

VB<Query()> _
Public Function ReturnAllStates() As IQueryable(Of Customer) ...
<Query()> _
Public Function GrabMeSomeGoldCustomers() As IQueryable(Of Customer) ...
<Query()> _
Public Function BringBackTheStates() As IEnumerable(Of State) ...

Now create the client query using the full server-side method name as the EntitySet name:

C#var customersQuery     = new EntityQuery<Customer>("ReturnAllStates", anEntityManager);
var goldCustomersQuery = new EntityQuery<Customer>("GrabMeSomeGoldCustomers", anEntityManager);
var statesQuery        = new EntityQuery<State>("BringBackTheStates", anEntityManager);

VBDim customersQuery     = New EntityQuery(Of Customer)("ReturnAllStates", anEntityManager)
Dim goldCustomersQuery = New EntityQuery(Of Customer)("GrabMeSomeGoldCustomers", anEntityManager)
Dim statesQuery        = New EntityQuery(Of State)("BringBackTheStates", anEntityManager)

Other discoverability requirements
It isn't enough to name the method properly. You must also

• Ensure the query method signature is appropriate for the root of the EntityQuery.
• Define the method within a class marked by the EnableClientAccess  attribute.
• Locate that class in a discovered assembly.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core.DomainServices~IdeaBlade.Core.DomainServices.EnableClientAccessAttribute.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery

