
Documentation - Secure the query with attributes

Page 1 - Last modified on August 15, 2012 17:22

Contents

• Security attributes
• ClientQueryPermissions
• RequiresAuthorization and RequiresRoles
• ClientCanQuery

• Add attributes to entity types in the EDM Designer
• Add attributes to the entity partial class
• Add attributes to named query methods
• Attributes and the EntityServerQueryInterceptor

• Types appearing in Include clauses are checked as well
• Defaults in the absence of attributes
• Summary of virtual authorization interception members
• EntityServerQueryInterceptor and named queries

The server should only honor a query coming from a client if the client is properly authorized. The
EntityServerQueryInterceptor is the most flexible way to evaluate and authorize a query but it requires code. You may be able to
satisfy your query security requirements declaritively by adding security attributes either to the entity type or to named
query methods. This topic explains what those attributes are and how they work.

Security attributes
Security attributes are the easiest way to authorize client queries. You can add attributes to entity class definitions and to named
query methods.

Here is a table summarizing query security attributes, followed by an explanation of how to add them, what they do, and
when DevForce applies them.

Attribute   Summary

ClientQueryPermissions    Enable or disable the client's right to use certain query features such
Include clauses and projections (Select clauses). 

RequiresAuthentication    Whether client must be authenticated to execute this named query or
refer to the adorned entity type in a query.

RequiresRoles    Which client roles are required in order to execute this named query
or refer to the adorned entity type in a query.

ClientCanQuery    Whether the client can refer to this type in a query. This attribute can
be applied to an entity type but not to a named query method.

ClientQueryPermissions

The ClientQueryPermissions attribute enables (or disables) certain query features.  At the moment it controls two client query
features:

1. Include  clauses: an Include clause adds related entities to query results.
2. Projections: a "projection" is a query that uses the Select or SelectMany LINQ operation to change the type of the result.

The attribute specifies a flag enumeration, ClientQueryPermissions, that captures the permission combinations. The enum
values are:

• Minimal (no Includes, no projections)
• AllowIncludes
• AllowProjections
• All (allow both includes, and projections)

You can apply this attribute to an entity type or to a named query method. Here is an example of the attribute applied to the
Orders type.

C#[ClientQueryPermissions(ClientQueryPermissions.AllowProjections)]
public partial class Order{...}

VB<ClientQueryPermissions(ClientQueryPermissions.AllowProjections)>
Partial Public Class Order ...

When both the entity type and a named query method have conflicting attributes, the named query attribute takes precedence.

You can associate this attribute with specific user roles and you can apply the attribute several times in order to express
different permissions for different roles. In the following GetGoldCustomers named query example, administrators can use
Includes and Projections with this query but no one else can:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-server-lifecycle-events
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ClientQueryPermissionsAttributeAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.RequiresAuthenticationAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.RequiresRolesAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ClientCanQueryAttribute.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/include-related-entities
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-anonymous-projections
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityServerQueryInterceptor~ClientQueryPermissions.html


Documentation - Secure the query with attributes

Page 2 - Last modified on August 15, 2012 17:22

C#[ClientQueryPermissions(ClientQueryPermissions.All, "admin")]
[ClientQueryPermissions(ClientQueryPermissions.Minimal)]
public IQueryable<Customer> GetGoldCustomers() {...}

VB<ClientQueryPermissions(ClientQueryPermissions.All, "admin")> _
<ClientQueryPermissions(ClientQueryPermissions.Minimal)> _
Public Function GetGoldCustomers() As IQueryable(Of Customer) ...

This attribute is beta as of version 6.1.0. A known issue causes DevForce to improperly apply this attribute to LINQ statements
returned by a named query.

RequiresAuthorization and RequiresRoles

These two attributes serve the same purpose as the like-named WCF RIA Services attributes.

RequiresAuthentication  ensures that a user must be authenticated to query the entity or use the named query method. 

RequiresRoles  ensures that only users with specific roles can query the entity or use the named query method. 

The EntityServerSaveInterceptor uses these same attributes to determine if the client is authorized to save the entity type.
 

ClientCanQuery

The ClientCanQuery attribute is similar to the RequiresRoles attribute but there are differences. You can only apply the
ClientCanQuery to entity types, not named queries.  It offers a little more precision when specifying which kinds of users can
reference an entity type in a query.

Example  Effect

ClientCanQuery(false)   No user can query with the type

ClientCanQuery(true)   All users can query with the type

ClientCanQuery(AuthorizeRolesMode.Any, role1, role2 ...)   A user with any of the mentioned roles can query with the type.

ClientCanQuery(AuthorizeRolesMode.All, role1, role2 ...)   Only a user with all of the mentioned roles can query with the type.  

ClientCanQuery is true by default so you generally do not need to add this attribute to your entity classes. However, you can
reverse the default (see the discussion of DefaultAuthorization below) which would mean that, by default, no client could query
with this type. If you change the default in this way, you may want to add this attribute to those types which should be client
queryable and set it to true explicitly.

The ClientCanQuery attribute is evaluated after RequiresAuthentication and RequiresRoles.

Add attributes to entity types in the EDM Designer
When you created your entity model, you may have noticed in the EDM Designer that each Entity has DevForce properties that
govern the ability of the client to query and save:

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.RequiresAuthenticationAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.RequiresRolesAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-edm-designer-properties


Documentation - Secure the query with attributes

Page 3 - Last modified on August 15, 2012 17:22

The CanQuery property translates to the ClientCanQuery  attribute on the generated entity class. The "Allow includes" and
"Allow projections" properties combine to determine a ClientQueryPermissions  attribute on the generated entity class.

The property values are tri-state: True, False, and Default. "Default" means "rely on the EntityServerQueryInterceptor's
default" as described below and DevForce won't generate the corresponding attribute. Because the "Allow ..." properties resolve
to a single attribute; either both are "default" or neither is.

Suppose we kept the default values for the two "Allow ..." properties and disabled (made false) the client's ability to query this
type. The generated class would look like this:

C#[IbEm.ClientCanQuery(false)]
public partial class OrderDetail : IbEm.Entity {}

VB<IbEm.ClientCanQuery(False)>
Partial Public Class OrderDetail
 Inherits IbEm.Entity
End Class

Turning off all direct query access may seem a bit draconian, but this is a valid approach for those types that you really only
want to allow on the server.  

Add attributes to the entity partial class
You don't have to rely on the EDM designer to generate the attributes. You can add them to the entity's partial class where you
can be more particular and assign permissions by role as seen in this example. 

C#[ClientCanQuery(AuthorizeRolesMode.Any, "Admin", "Sales")]
public partial class Order : IbEm.Entity {}

VB<ClientCanQuery(AuthorizeRolesMode.Any, "Admin", "Sales")>
Partial Public Class Order
 Inherits IbEm.Entity
End Class

You'll need the partial class if you want to add the RequiresAuthentication or RequiresRoles attributes.

C#[RequiresAuthentication]
public partial class OrderDetail : IbEm.Entity {}

VB<RequiresAuthentication>
Partial Public Class OrderDetail
 Inherits IbEm.Entity
End Class

Add attributes to named query methods
You can add any of the query security attributes to the definition of a named query method except ClientCanQuery. Here's and
example restricting a specialized named query to adminstrators

C#[RequiresRoles("admin")]
public IQueryable<Customer> GetGoldCustomers() {...}

VB<RequiresRoles("admin")>
Public Function GetGoldCustomers() As IQueryable(Of Customer)...

Attributes and the EntityServerQueryInterceptor
The security attributes don't do anything on their own. They are metadata to be read and interpreted. Your code can read the
metadata, perhaps to control the appearance and capabilities of the UI. 

The DevForce EntityServerQueryInterceptor reads and interprets the metadata when it processes the query. You can derive
from this class and override virtual methods to introduce custom logic of your own including custom query security logic.

EntityServerQueryInterceptor.AuthorizeQuery is the primary method to override. This method first calls
GetClientQueryPermission to confirm that the client query is only using permitted features. Then it calls the ClientCanQuery
method for each entity type involved in the original client query in order to verify that the client is authorized to refer to that
type in a query.  The default ClientCanQuery method discovers and applies the following attributes in sequence:

• RequiresAuthentication
• RequiresRoles
• ClientCanQuery

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ClientCanQueryAttribute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.ClientQueryPermissionsAttribute.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-partial-class-file
http://drc.ideablade.com/ApiDocumentation/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.RequiresAuthenticationAttribute.html
http://drc.ideablade.com/ApiDocumentation/webframe.html?IdeaBlade.Core~IdeaBlade.Core.DomainServices.RequiresRolesAttribute.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/named-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-server-lifecycle-events
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor~AuthorizeQuery.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor~GetClientQueryPermission.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor~ClientCanQuery.html


Documentation - Secure the query with attributes

Page 4 - Last modified on August 15, 2012 17:22

It bears repeating that this phase of the analysis applies to the original client query, not the named query. 

Types specified inside the named query get a free pass. For example, you can prevent client queries from using the Customer
type by setting ClientCanQuery to false. If a client submitted a query for Customers, the server would reject it. But it is OK for
the client to invoke the GetGoldCustomers named query even though its implementation involves the Customer type; a named
query is written for and executed on the server and is presumed to be secure.

Types appearing in Include clauses are checked as well

For example, suppose you blocked query of the OrderDetails type by adorning that class with ClientCanQuery(false). The client
could not query for OrderDetails directly. The client would also be unable to acquire OrderDetail entities indirectly via a query
for Orders that had an "OrderDetails" Include clause.

Defaults in the absence of attributes

The default GetClientQueryPermission method looks for a ClientQueryPermissions attribute for the query. If it can't find that
attribute, it substitutes the DefaultClientQueryPermissions. The default is "All" meaning that all potential client query features
are permitted. You can override this property to provide a more restrictive global setting such as "Minimal". Then the developer
would have to enable query features explicitly on either the entity types or named query methods.

The ClientCanQuery method looks for a ClientCanQuery attribute on each type involved in the client query. If it can't find
that attribute, it allows or disallows the query based on the value of the DefaultAuthorization property. That value is true by
default, meaning that a type without a ClientCanQuery attribute can be queried. You can reverse this default by overriding this
property and returning false; then every type must carry the ClientCanQuery attribute or it can't be referenced in a client query.

Summary of virtual authorization interception members

The following Authorization-related properties and methods are all virtual which means that you can override them in your
custom derived EntityServerQueryInterceptor.

Member   Summary 

AuthorizeQuery   The primary query authorization method; it orchestrates
authorization and calls the other authorization members.

GetClientQueryPermissions   Get the permissions that govern certain query features.

DefaultClientQueryPermissions   Get the ClientQueryPermissions enum to use when no attribute is
specified.

ClientCanQuery   Get whether the client can refer to the specified type in this query.

DefaultAuthorization   Get whether the type can be referenced in a query if it lacks a
ClientCanQuery attribute.

You typically delegate to DevForce base class members, either before or after running your code ... but you don't have to
do so. For example, within the interceptor you could ignore DevForce's interpretation of the attributes when you have better,
perhaps contradicting, information available to you.

EntityServerQueryInterceptor and named queries

When the client submits a query that invokes a named query, DevForce authorizes the named query first. You cannot bypass
the RequiresAuthentication and RequiresRoles attributes that adorn a named query method. If the named query fails attributed
authorization, the query fails before reaching the EntityServerQueryInterceptor.

If the named query survives these attribute-based security checks, DevForce combines the output of the named query method
with the original client query instructions and passes the product of that combination to the EntityServerQueryInterceptor.

The interceptor has access to the original client query and the original named query method as described here which means
you can analyze the parts in your own custom interceptor.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor~DefaultClientQueryPermissions.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerQueryInterceptor~DefaultAuthorization.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/intercept-named-query

