
Documentation - More query tips

Page 1 - Last modified on June 11, 2014 09:07

Contents

• Create a Query with no EntityManager Attached
• Existence queries: are there any entities that match?
• Use FirstOrNullEntity
• First vs. Single
• First vs. Take(1)
• Query using an IN clause
• Query with canonical functions

In previous topics we've seen how to create a basic LINQ query, how to return part of an entity, how to include related
entities, and more.  Here are a few more miscellaneous query tips.

Create a Query with no EntityManager Attached
You're familiar with the auto-generated query properties in your domain-specific EntityManager, that's what you're using
whenever you do something like the following:

C#var mgr = new NorthwindIBEntities();
var customerQuery = mgr.Customers;

VBDim mgr = New NorthwindIBEntities()
Dim customerQuery = mgr.Customers

These queries are "for" that EntityManager instance.  If you use one of the query extension methods such as Execute or
ExecuteAsync, the query will be executed by the EntityManager on which the query was created.

C#var list = customerQuery.Execute();

VBDim list = customerQuery.Execute()

It's often useful to create a query that can be easily used with any EntityManager however.  Suppose your application requires
multiple EntityManagers because you need separate editing contexts - separate "sandboxes" - for contemporaneous editing
sessions. You know what queries you will need to support the sandbox scenarios. Because you will re-use the query among
several EntityManagers, you don't want to tie the query to any particular EntityManager.

You can easily create a query without an EntityManager:

C#EntityQuery<Customer> query = new EntityQuery<Customer>();

VBDim query As New EntityQuery(Of Customer)()

You then have a few choices for how you execute this query.

One is to use the query methods on the EntityManager:

C#var mgr = new NorthwindIBEntities();
var list = mgr.ExecuteQuery(query);
// ... and on another EM ...
var mgr2 = new NorthwindIBEntities();
var list2 = mgr2.ExecuteQuery(query);

VBDim mgr = New NorthwindIBEntities()
Dim list = mgr.ExecuteQuery(query)
' ... and on another EM ...
Dim mgr2 = New NorthwindIBEntities()
Dim list2 = mgr2.ExecuteQuery(query)

You can also use the With extension method to target an EntityManager.  You can use the With method for either an
"unattached" query or one created for another EntityManager.

C#var query = manager.Customers;
var mgr2 = new NorthwindIBEntities();
var query2 = query.With(mgr2);

VBDim query = manager.Customers
Dim mgr2 = New NorthwindIBEntities()
Dim query2 = query.With(mgr2)

If you execute a query without "attaching" it to an EntityManager in some way an exception will be thrown. 

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-linq-basics
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-anonymous-projections
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/include-related-entities
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/include-related-entities
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-generate-entitymanager
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~Execute.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~ExecuteAsync.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EntityQuery-extensions#HTheWith2829ExtensionMethod


Documentation - More query tips

Page 2 - Last modified on June 11, 2014 09:07

Existence queries: are there any entities that match?
If you need to determine whether one or more entities meets certain criteria without retrieving the entities the Any LINQ
operator is a good choice.

C#string someName = "Some company name";
bool rc = manager.Customers.Any(c => c.CompanyName == someName);

VBDim someName As String = "Some company name"
Dim rc As Boolean = manager.Customers.Any(Function(c) c.CompanyName = someName)

As an "immediate execution" query, to use this asynchronously you must use AsScalarAsync:

C#string someName = "Some company name";
bool rc = await  manager.Customers.AsScalarAsync().Any(c => c.CompanyName == someName);

VBDim someName As String = "Some company name"
Dim rc as Boolean = Await manager.Customers.AsScalarAsync().Any(Function(c) c.CompanyName = someName)

The Count operator is also useful here, if instead of returning a boolean you want the total number matching the criteria.

Use FirstOrNullEntity
First, some explanation of First.  The LINQ First operator, in all incarnations, will throw an exception if no items are found.
 Since you probably don't want your program to terminate for such a simple query, you're usually better off using either the
standard LINQ FirstOrDefault or the DevForce extension FirstOrNullEntity.

FirstOrDefault will return the first item or its default value.  For a reference type such as an entity the default value is null
(Nothing in VB). It's often easier to work with null entities in DevForce, so if you instead use FirstOrNullEntity either the first
item matching the selection criteria is returned, or the entity type's null entity.

As an immediate execution query, you must use AsScalarAsync to execute this query in asynchronous environments.

C#Employee emp = manager.Employees.FirstOrNullEntity(e => e.City == "Moscow");
// ... or ...
Employee emp = await manager.Employees.AsScalarAsync().FirstOrNullEntity(e => e.City == "Moscow");

VBDim emp As Employee = manager.Employees.FirstOrNullEntity(Function(e) e.City = "Moscow")
' ... or ...
Dim emp as Employee = Await manager.Employees.AsScalarAsync().FirstOrNullEntity(Function(e) e.City = "Moscow")

First vs. Single
The LINQ Single operator returns the one and only element matching the selection criteria.  If multiple elements match the
criteria, it throws.  If no elements match the criteria, it throws.  This isn't some diabolical DevForce design, these are the rules of
LINQ.

If you do decide to use Single, it's usually best to use either SingleOrDefault or for async only, the DevForce extension
SingleOrNullEntity, to ensure that the query won't fail if no item is returned.  

First vs. Take(1)
The LINQ Take operator is usually used to take one or more items.  You can use Skip with Take to skip items before taking; this
is how paging is done.

Take is not an immediate execution query, which can be good news in some environments, and doesn't use AsScalarAsync
when executed asynchronously.  It also always returns an IEnumerable<T>, so even a Take(1) will return an IEnumerable with
the element.  If no items matched the criteria then an empty enumeration is returned.

Query using an IN clause
If you've searched in vain for the LINQ equivalent to the SQL "In" clause, you can stop worrying.  LINQ uses the Contains
operator to implement a query with search criteria for a value in a list.  (This is usually translated to a SQL "In" clause by the
Entity Framework when the SQL is generated.)

C#var countryNames = new List<string> {"UK", "France", "Germany"};
var query = manager.Customers  
            .Where(c => countryNames.Contains(c.Country));

VBDim countryNames = New List(Of String) From {"UK", "France", "Germany"}

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/async-immediate-execution
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityQueryExtensions~FirstOrNullEntity.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/null-entity
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityScalarAsyncExtensions~SingleOrNullEntity.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-paging


Documentation - More query tips

Page 3 - Last modified on June 11, 2014 09:07

Dim query = manager.Customers.Where(Function(c) countryNames.Contains(c.Country))

There is one caveat here, however.  Your contains list should be a List<T>, where "T" is a numeric type, a string, a DateTime
or a GUID.  Why this restriction?  The list has to meet DevForce's requirements for known types.  DevForce will automatically
recognize these lists as known types without any extra effort on your part.  If you need some other List then you will need to
ensure it can be used in n-tier deployments.  You also can't use an array, for example using string[] above will fail in an n-tier
deployment.  This is due to an arcane data contract naming issue, so don't say we didn't warn you.

Query with canonical functions
You can use the Entity Framework EntityFunctions class in your server-side code with data source only queries.
 EntityFunctions provides methods which map to canonical functions supported by all database providers.  

For SQL Server databases, the SQLFunctions class can be used in server-side code with data source only queries.  

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/knowntypes
http://msdn.microsoft.com/en-us/library/system.data.objects.entityfunctions(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.data.objects.sqlclient.sqlfunctions(v=vs.110).aspx

