
Documentation - Cache only queries

Page 1 - Last modified on September 17, 2012 05:00

Contents

• Finding entities in cache
• Finding an entity by its EntityKey
• Finding entities by EntityState
• Finding an object graph

• Synchronous queries in async environments

There are several techniques to help query and find entities in cache.

Finding entities in cache
The EntityManager provides several means of finding entities in its entity cache.  In DevForce-speak, "find" means to perform a
search of cache only without attempting to access the server or datastore.  

Finding an entity by its EntityKey

If you know the EntityKey of an entity, you can use the FindEntity method to find the entity in the EntityManager cache.  This is
an efficient way both to locate the entity or to prove that the entity is not in cache.

C#Employee emp = (Employee) Manager.FindEntity(new EntityKey(typeof (Employee), 1));

VBDim emp As Employee = CType(Manager.FindEntity(New EntityKey(GetType(Employee), 1)), Employee)
If the requested entity is not found a null (nothing) will be returned from the FindEntity call.

Note that the FindEntity call returns an object, so you must cast the returned object to the entity type expected.

You can also use FindEntity to find an entity with an EntityState of Deleted.  This is the only means of locating an as-yet-
unsaved deleted entity.

C#var key = new EntityKey(typeof (Employee), 1);
Employee emp = (Employee) Manager.FindEntity(key), includeDeleted: true );

VBDim key = New EntityKey(GetType(Employee), 1)
Dim emp As Employee = CType(Manager.FindEntity(key), Employee), includeDeleted As Employee

Finding entities by EntityState

You can also look for entities in cache based on their EntityState.  You can combine EntityStates too, for example to look for all
entities which are either Added or Modified.  

FindEntities comes in both generic and non-generic forms, and will return either an IEnumerable or IEnumerable<T>.  If
using the non-generic overload you can still cast the results to an IEnumerable<T> in order to build a composable LINQ query.

C#var allAdded = manager.FindEntities(EntityState.Added);

VBDim allAdded = manager.FindEntities(EntityState.Added)

C#var empList= manager.FindEntities<Employee>(EntityState.Unchanged);

VBDim empList = manager.FindEntities(Of Employee)(EntityState.Unchanged)
Using LINQ you can do more interesting things with the results:
C#var addedCustomersInUK = manager.FindEntities<Customer>(EntityState.Added).Where(c => c.Country == "UK");
// .. or ..
var addedCustomersInUK = manager.FindEntities(EntityState.Added).OfType<Customer>().Where(c => c.Country == "UK");

VBDim addedCustomersInUK = manager.FindEntities(Of Customer)(EntityState.Added).Where(Function(c) c.Country = "UK")
' .. or ..
Dim addedCustomersInUK = manager.FindEntities(EntityState.Added).OfType(Of Customer)().Where(Function(c) c.Country = "UK")

Finding an object graph

The FindEntityGraph method allows you to search the entity cache for an object graph (aka entity graph) - a list of entities that
are navigable from one or more root entities according to a specified graph.  Working with an entity graph is particularly useful
when performing a save or import and you wish to work with only the object and its dependent entities.

The FindEntityGraph method takes one or more "root" entities, effectively the starting point of the graph, and one or more
EntitySpans , information about the entity relationships to be followed to build the graph.  The FindEntityGraph method also
allows you to specify the EntityState(s) wanted.  

This sounds more complicated that it really is, so here's a simple example.  Here we build an entity graph of all orders and
order details for a specific employee:

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/start-entity-cache
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityKey.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~FindEntity.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate#HIntroductiontoEntityState
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~FindEntities.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~FindEntityGraph.html
http://drc.ideablade.com/devforce-2012/bin/create/Documentation/save-dependency-graph?parent=Documentation.query-working-in-cache
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entities-import#HFindentitiestoimport
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntitySpan.html


Documentation - Cache only queries

Page 2 - Last modified on September 17, 2012 05:00

C#var emp = Manager.FindEntity(new EntityKey(typeof(Employee), 1));
var span = new EntitySpan(typeof(Employee), EntityRelations.FK_Order_Employee, EntityRelations.FK_OrderDetail_Order);
var entityGraph = Manager.FindEntityGraph(new[] { emp }, new[] { span }, EntityState.AllButDetached);

VBDim emp = Manager.FindEntity(New EntityKey(GetType(Employee), 1))
Dim span = New EntitySpan(GetType(Employee), EntityRelations.FK_Order_Employee, _
  EntityRelations.FK_OrderDetail_Order)
Dim entityGraph = Manager.FindEntityGraph( { emp }, { span }, EntityState.AllButDetached)

Here's a more complex example.  The EntityManager must be able to "walk" each EntitySpan, in the case above we navigated
from Employee -> Order -> OrderDetail.  If a relationship can't be walked, then you must supply another EntitySpan for it. Here
we also want to retrieve all Customers for the selected Orders.  To do so we need to include another EntitySpan, one which
walks from Employee -> Order -> Customer.

C#var emp = Manager.FindEntity(new EntityKey(typeof(Employee), 1));
var span1 = new EntitySpan(typeof(Employee), EntityRelations.FK_Order_Employee, EntityRelations.FK_OrderDetail_Order);
var span2 = new EntitySpan(typeof(Employee), EntityRelations.FK_Order_Employee, EntityRelations.FK_Order_Customer);
var entityGraph = Manager.FindEntityGraph(new[] { emp }, new[] { span1, span2 }, EntityState.AllButDetached);

VBDim emp = Manager.FindEntity(New EntityKey(GetType(Employee), 1))
Dim span1 = New EntitySpan(GetType(Employee), EntityRelations.FK_Order_Employee, _
  EntityRelations.FK_OrderDetail_Order)
Dim span2 = New EntitySpan(GetType(Employee), EntityRelations.FK_Order_Employee, _
  EntityRelations.FK_Order_Customer)
Dim entityGraph = Manager.FindEntityGraph( { emp }, { span1, span2 }, EntityState.AllButDetached)

A few more things to note.  

• The "roots" of the graph do not need to be of the same type.
• Deleted entities can be included in the graph.
• The "graph" is just an IList<object>, not a special type.
• Entities not in cache are not lazily loaded when an association is navigated.

Synchronous queries in async environments
We've already seen that any query can be given a QueryStrategy to control where it's executed.  When you provide a CacheOnly
query strategy, either explicitly on the query, by setting the DefaultQueryStrategy on the EntityManager, or by disconnecting,
the EntityManager will run the query against the local entity cache only and not attempt to communicate with the EntityServer.
 Since no server communication is performed, you can execute CacheOnly queries synchronously in all environments, including
Silverlight and Windows Store applications.

For example, the following will work in any environment:

C#var customers = Manager.Customers.With(QueryStrategy.CacheOnly).Execute();

VBDim customers = Manager.Customers.With(QueryStrategy.CacheOnly).Execute()
Or alternately,
C#var customers = Manager.Customers.With(QueryStrategy.CacheOnly).ToList();

VBDim customers = Manager.Customers.With(QueryStrategy.CacheOnly).ToList()

You can also issue scalar "immediate" execution queries against cache only without using AsScalarAsync .  Here's a First
method executed synchronously against cache:

C#var aCustomer = Manager.Customers.With(QueryStrategy.CacheOnly).First();

VBDim aCustomer = Manager.Customers.With(QueryStrategy.CacheOnly).First()

In async environments you'll want to take care not to issue these synchronous queries without ensuring that the query will
indeed be executed against cache, since an error will be thrown otherwise.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-strategy
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityScalarAsyncExtensions.html

