
Documentation - Replace unpredictable DateTime and Guid classes

Page 1 - Last modified on August 15, 2012 17:20

Contents

• The problem
• SystemTime
• SystemGuid
• Make your own system utility classes

Add system utility classes like SystemTime and SystemGuid to your application so you can test component behaviors that
are otherwise sensitive to unpredictable values coming from the system environment (e.g., the current time or a new Guid).

The problem
.NET environment functions typically return values that come from the operating system such as DateTime.Now and
Guid.NewGuid(). These values are different everytime which complicates repeatable testing.

You can control these values if you replace calls to the .NET functions with calls to similar functions in system utility classes
that you wrote. These utility classes behave like the .NET functions under normal conditions but you can change their behavior
during testing.

SystemTime
DateTime is especially problematic for testers who want to validate logic that is time sensitive. Suppose you had business logic
that expected something to happen three days from now. You certainly don't want a three-day test.

You can write a SystemTime class such as the one included below. SystemTime has Now() and Today() methods that return a
DateTime. If you do nothing, they behave exactly like DateTime.Now and DateTime.Today.

Now everywhere in your application you always call SystemTime.Now() and SystemTime.Today() wherever you would have
called DateTime.Now and DateTime.Today.

If you do nothing, the behavior of your application is unchanged.

During a test, however, you can replace the SystemTime.NowFn with a test-time function that returns any DateTime value you
need.

Remember when you are done to restore NowFn to the proper default behavior. A "ResetNowFn" method makes that easier
for testers.

C# /// <summary>
 /// Replacement for <see cref="DateTime"/>
 /// ** ALWAYS USE THIS INSTEAD OF CALLING DATETIME DIRECTLY
 /// </summary>
 /// <remarks>
 /// Covers the <see cref="DateTime"/> static methods so that
 /// test and development scenarios can reset the "Current" time
 /// to whatever they like. See <see cref="NowFn"/>.
 /// TODO: Extend to support UtcNow
 /// </remarks>
 public static class SystemTime {
 /// <summary>
 /// Gets a <see cref="DateTime"/> that is set to the "current" date and time
 /// in the manner of <see cref="DateTime.Now"/>.
 /// See <see cref="NowFn"/>.
 /// </summary>
 public static DateTime Now() { return NowFn(); }
 /// <summary>
 /// Gets "current" date
 /// in the manner of <see cref="DateTime.Today"/>.
 /// See <see cref="NowFn"/>.
 /// </summary>
 public static DateTime Today() {
 var now = Now();
 return now-now.TimeOfDay;
 }
 /// <summary>
 /// Function for getting the "current" date and time.
 /// Defaults to <see cref="DateTime.Now"/> but
 /// could be replaced in a test or development scenario.
 /// </summary>
 public static Func<DateTime> NowFn = () => DateTime.Now;

Documentation - Replace unpredictable DateTime and Guid classes

Page 2 - Last modified on August 15, 2012 17:20

 /// <summary>
 /// Reset <see cref="NowFn"/> to application default
 /// </summary>
 public static void ResetNowFn() { NowFn = () => DateTime.Now; }
 }

VB''' <summary>
''' Replacement for <see cref="DateTime"/>
''' ** ALWAYS USE THIS INSTEAD OF CALLING DATETIME DIRECTLY
''' </summary>
''' <remarks>
''' Covers the <see cref="DateTime"/> static methods so that
''' test and development scenarios can reset the "Current" time
''' to whatever they like. See <see cref="NowFn"/>.
''' TODO: Extend to support UtcNow
''' </remarks>
Public NotInheritable Class SystemTime
 ''' <summary>
 ''' Gets a <see cref="DateTime"/> that is set to the "current" date and time
 ''' in the manner of <see cref="DateTime.Now"/>.
 ''' See <see cref="NowFn"/>.
 ''' </summary>
 Private Sub New()
 End Sub
 Public Shared Function Now() As Date
 Return NowFn()
 End Function
 ''' <summary>
 ''' Gets "current" date
 ''' in the manner of <see cref="DateTime.Today"/>.
 ''' See <see cref="NowFn"/>.
 ''' </summary>
 Public Shared Function Today() As Date
 Dim now = SystemTime.Now()
Return now-now.TimeOfDay
 End Function
 ''' <summary>
 ''' Function for getting the "current" date and time.
 ''' Defaults to <see cref="DateTime.Now"/> but
 ''' could be replaced in a test or development scenario.
 ''' </summary>
 Public Shared NowFn As Func(Of Date) = Function() Date.Now
 ''' <summary>
 ''' Reset <see cref="NowFn"/> to application default
 ''' </summary>
 Public Shared Sub ResetNowFn()
 NowFn = Function() Date.Now
 End Sub
End Class

SystemGuid
Guid.NewGuid() returns a new and deliberately unpredictable value every time. You may find yourself writing a test where you
would like to control the value of that new Guid.

You can write a SystemGuid class such as the one included below. SystemGuid has a NewGuid() method that return a Guid.
If you do nothing, it behaves exactly like Guid.NewGuid().

Now everywhere in your application you always call SystemGuid.NewGuid() wherever you would have called Guid.NewGuid.

If you do nothing, the behavior of your application is unchanged.

During a test, however, you can replace the SystemGuid.NewGuidFn with a test-time function that returns any Guid value you
need.

Remember when you are done to restore NewGuidFn to the proper default behavior. A "ResetNewGuidFn" method makes
that easier for testers.

C# public static class SystemGuid
 {
 /// <summary>

Documentation - Replace unpredictable DateTime and Guid classes

Page 3 - Last modified on August 15, 2012 17:20

 /// Gets a new <see cref="Guid"/>
 /// in the manner of <see cref="Guid.NewGuid"/>.
 /// See <see cref="NewGuidFn"/>.
 /// </summary>
 public static Guid NewGuid() { return NewGuidFn(); }
 /// <summary>
 /// Function for getting a new <see cref="Guid"/>.
 /// Defaults to <see cref="Guid.NewGuid"/> but
 /// could be replaced in a test or development scenario.
 /// </summary>
 public static Func<Guid> NewGuidFn = Guid.NewGuid;
 /// <summary>
 /// Reset <see cref="NewGuidFn"/> to application default
 /// </summary>
 public static void ResetNewGuidFn() { NewGuidFn = Guid.NewGuid; }
 }

VBPublic NotInheritable Class SystemGuid
 ''' <summary>
 ''' Gets a new <see cref="Guid"/>
 ''' in the manner of <see cref="Guid.NewGuid"/>.
 ''' See <see cref="NewGuidFn"/>.
 ''' </summary>
 Private Sub New()
 End Sub
 Public Shared Function NewGuid() As Guid
 Return NewGuidFn()
 End Function
 ''' <summary>
 ''' Function for getting a new <see cref="Guid"/>.
 ''' Defaults to <see cref="Guid.NewGuid"/> but
 ''' could be replaced in a test or development scenario.
 ''' </summary>
 Public Shared NewGuidFn As Func(Of Guid) = Guid.NewGuid
 ''' <summary>
 ''' Reset <see cref="NewGuidFn"/> to application default
 ''' </summary>
 Public Shared Sub ResetNewGuidFn()
 NewGuidFn = Guid.NewGuid
 End Sub
End Class

Make your own system utility classes
Look for other places in your application where you call a .NET static function or property and consider following the pattern
you see here.

