
Documentation - Server-side save lifecycle events

Page 1 - Last modified on August 15, 2012 17:22

Contents

• Interceptor design guidelines
• Interceptor template methods

• Virtual Properties
• Other properties

The changes-set of entities to be saved are processed by the EntityServer which passes the change-set through an instance of
the DevForce EntityServerSaveInterceptor. You can alter the course of that processing by creating a 'custom' subclass of the
EntityServerSaveInterceptor and overriding its virtual properties and template methods. DevForce can discover the existence of
your class automatically.

Interceptor design guidelines
You don't have to write a custom interceptor class. The EntityServer will use the DevForce EntityServerSaveInterceptor if it
doesn't find a custom subclass. Many production applications do include a custom interceptor.

The EntityServerSaveInterceptor class resides in the IdeaBlade.EntityModel.Server assembly which must be referenced by the
project that contains your custom subclass.

You can write only one custom interceptor. It should be a public class and must have a public default, parameterless
constructor (if it has a constructor).

Please keep your named custom interceptor stateless if possible. DevForce creates a new instance of this class for each
query performed by the server so you generally don't have to worry about threading issues with instance state. If you decide to
maintain static state, give great care to ensuring safe concurrent access to that state.

Avoid putting anything in the interceptor other than what is strictly necessary to achieve its purpose. The interceptor is a poor
choice for a grab-bag of server-side features.

You don't have to override any of the template methods; the default base implementations all work fine. You may wish to be
explicit in your custom class and override every template method; your override can simply delegate to the base implementation.

Make sure that the assembly containing your custom interceptor is deployed to the server such that it can be discovered.
Assembly discovery is discussed here.

Interceptor template methods
The EntityServerSaveInterceptor class contains a number of template methods that you can override to modify the base behavior
of the class. These methods are executed at key points within the server-side part of the save process; you override them in your
subclass to perform custom interventions. They enable you to perform operation both before and after the physical save to the
database (or equivalent backing store).

Most of the template methods have no parameters because all of the relevant data are provided by properties and methods on
each instance of the class. This also allows IdeaBlade to extend the base class in the future without breaking custom developer
code.

Many of the template methods described below return a boolean result with a base implementation that returns "true". A
return value of "true" allows the save to continue. A return value of "false" causes the save to exit with an exception. There is
also a flag available that may be used to indicate a "canceled" operation.

Note that while the base implementation of the authorization method does not return ‘false’, it will throw an exception it it
detects an unauthorized save. It treats an unauthorized save as an exception, not a ‘cancellation’.

protected virtual bool AuthorizeSave()
Override to control whether the user is authorized to perform the save. The base implementation walks all of the types
involved in the save and calls the ClientCanSave method defined below for each to determine if any unauthorized types
are being accessed. An EntityServerException will be thrown with a PersistenceFailure value of "Authorization" if any
unauthorized types are encountered. You can bypass authorization by simply returning "true" without calling the base
implementation.

protected virtual bool ValidateSave()
Override to extend (or remove) server-side validation of the data to be saved. The base implementation of this method
will perform "instance validation" for each entity being saved. If any verification fails, an EntityServerException will
be thrown with a PersistenceFailure type of "Validation". The VerifierEngine property is available in order to discover
what validations will be performed. You can bypass validation by simply returning "true" without calling the base
implementation.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/discovery
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~AuthorizeSave.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~ValidateSave.html

Documentation - Server-side save lifecycle events

Page 2 - Last modified on August 15, 2012 17:22

protected virtual bool ExecuteSave()
Override to intercept the save immediately before and after the save request is executed. The entities involved in the save
may be modified before calling the base implementation of this method and logging or other post processing operations
may be performed after the base implementation is called. Note that the base implementation must be called in order
for the save to be executed. The EntityManager property defined below contains all of the entities to be saved and its
contents may be modified at any time prior to the base implemention of the ExecuteSave method being called.

protected virtual bool ClientCanSave(Type type)
Override to control which types are authorized to be saved. This method is called from the base implementation of the
AuthorizeSave. It may be overridden to add additional restrictions or to relax existing ones. If adding restrictions, make
sure that the base implementation is called.

protected virtual void OnError(Exception e, PersistenceFailure failureType)
May be overridden to log errors. No logging is performed by the default implementation.

Virtual Properties

protected virtual bool DefaultAuthorization { get; }
Override this property to change the Default authorization of whether or not authorization succeeds if no Authorization
attributes are found. This property defines the default authorization behavior for any types that do not have a
ClientCanSave attribute defined. The base implementation returns "true" which means that by default any type not
otherwise restricted is saveable. By returning a "false" here, any types that are not specifically marked as saveable will
restricted.

Other properties

In addition to the above, the following protected read only properties are also available.

Property Property
type

Used for

Context object Gets or sets a custom context object for this
operation.

EntityManager EntityManager Returns an EntityManager holding the
entities to be saved. Note that this is not
the original EntityManager on which the
EntityManager.SaveChanges() call was
made. This property can be very useful
when overriding the ExecuteSave method.
Additional entities that need to be saved can
be added to this EntityManager or entities
that should not be saved can be removed
before calling base.ExecuteSave().

IsServerSave boolean Returns true if the save was issued on the
server. This can occur as a result of an
InvokeServerMethod call. This is useful
because you typically do not need to
reauthorize a save where the request for the
save originates on the server.

Principal IPrincipal The IPrincipal from the user session
requesting this operation.

SaveOptions SaveOptions Returns the SaveOptions provided in the
SaveChanges call.

VerifierEngine VerifierEngine Returns the VerifierEngine which will be used
for server-side validation.

• Note that the EntityManager returned by the EntityManager property is NOT the original client-side EntityManager on
which the save request was made. It is a 'preauthenticated' server-side EntityManager, and its cache is consists of the
entities being saved. Because of its "preauthenticated" nature, there is no Principal attached to this EntityManager and
any operations that it performs bypass regular authentication. Because this EntityManager can only be accessed on the
server from within code deployed to the server all operations that it performs are considered "priviledged".

Because this EntityManager is untyped, additional entities of any entity type may queried with it. Queries against this
EntityManager are usually composed via a technique shown in the following example, (the code below is assumed to be
executing within the context of some EntityManagerSaveInterceptor method). Note the use of the EntityQuery<T> constructor.

C#var newQuery = new EntityQuery<Customer>().Where(c => c.CompanyName.StartsWith("S"))

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~ExecuteSave.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~ClientCanSave.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~OnError.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~DefaultAuthorization.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~Context.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~EntityManager.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~IsServerSave.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~Principal.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~SaveOptions.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-methods
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Server~IdeaBlade.EntityModel.Server.EntityServerSaveInterceptor~VerifierEngine.html

Documentation - Server-side save lifecycle events

Page 3 - Last modified on August 15, 2012 17:22

var custs = newQuery.With(EntityManager).ToList();

