
Documentation - Save lifecycle

Page 1 - Last modified on September 17, 2012 18:04

Workflow for a save
During the execution of a save a number of discrete steps are followed. DevForce provides several points along the way where a
developer can intervene and modify the execution path. This page describes this sequence of steps and the interception points. 

Component Action

Client Tier
Application Code

The client application adds, modifies and deletes any number of
business objects on the client.

The client application asks a EntityManager to save all pending
changes.

Client Tier
EntityManager

Makes a save list of all of the new, modified, and deleted entities in
the EntityManager entity cache.

Fires the Saving event, passing in the list of entities to be saved.
The listener can add or remove entities from this list or cancel the
save.  For now, let's assume that application listener just okays the
save.

Transmits the list of entities to be saved to the EntityServer.

Middle Tier
EntityServer

Server authenticates the user. Let's assume success.

The EntityServer creates a new EntityServerSaveInterceptor or an
instance of a developer customized subclass.

In the EntityServerSaveInterceptor the AuthorizeSave method can
be used to perform security checks; the ValidateSave method can be
used to perform server-side validation.

When the EntityServerInterceptor.ExecuteSave method is called,
where DevForce performs a temporary id to permanant id conversion
and then forwards the saves to the Entity Framework for execution.

Data Tier
Data Source

Performs the persistence operations. If there are no failures, it
commits them; if there is a single failure, it rolls them all back.

Middle Tier – EntityServer If the transaction failed, returns to the EntityManager the identity of
the culprit entity and the exception raised by the data source. The
EntityManager stores this information in the SaveResult and returns to
the client application. Workflow ends. Otherwise…

The transaction succeeded. The EntityServer re-queries the
database(s) for all of the inserted and modified entities that are
sourced in databases, thus capturing the effects of triggers that fired
during save.

Converts the (potentially) revised data into entities and sends them
to the client side EntityManager.

The server’s local copy of the entities go out of scope and the
garbage collector reclaims them. This enables the object server to stay
stateless.

Client Tier
EntityManager

Performs id fixup, converting temporary ids to permanent ids based
on a mapping between the two generated by the EntityServer during
the save and passed back to the client in the previous step.

Replaces cached entities with updates from EntityServer. They are
marked “unchanged” because they are now current.

Raises the Saved event with list of saved inserted and modified
entities.

Client Tier
Application Code

The application resumes.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Entity+Framework

