
Documentation - Control the save order

Page 1 - Last modified on August 15, 2012 17:20

One question that comes up regularly is how does a developer control the order in which his entities are saved to the
database.

The simple answer is:  He or she doesn't.

The rules are actually a little different for POCO's.

This is actually a good thing. It turns out that DevForce and the Entity Framework do an excellent job of determining the
order that entities need to be saved so as to avoid violating database constraints. In fact, this is probably something that most
developers would rather not have to worry about. It isn't simply a matter of specifying that certain types get saved before other
types, it turns out that correctly ordering a save may require type A to be saved before type B for one instance of type A but
after it for another. The rules regarding whether to perform deletes before or after adds and modifications change in some cases
when cascading deletes are involved. So, in general, let DevForce and the Entity Framework, do the save ordering for you.

Ok, but what if you have a really strange case that DevForce cannot handle? This really shouldn't happen, so please let us
know if it does so that we can understand the use case.

You have two choices:

• Option 1) Break your saves into groups and call SaveChanges more than once. The problem with this is that you will lose
the ability to treat the combined saves as a single transaction.

• Option 2) Create an EntityCacheState object with your changes and make an InvokeServerMethod call to a 'custom' server
side method with this object. Within the server side implementation, create a new TransactionScope and inside this
transaction scope do the following:

• Create a new EntityManager and load the EntityCacheState object into it.
• Perform option 1 above.  You are allowed to call SaveChanges within your server side method.
• DevForce will 'notice' that its saves are being called within an 'outer' TransactionScope and will force all of its

operations to participate in this scope. This is what gives you back a 'Transactional Save' even though you are
doing it in pieces.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/poco
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Entity+Framework
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityCacheState.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~InvokeServerMethod.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager

