
Documentation - Use ASP.NET security

Page 1 - Last modified on April 03, 2013 17:41

Contents

• Settings
• Authentication

• Forms Authentication
• Windows Authentication

• Roles
• Profile
• Application Name
• Customizations

• Credentials (Forms authentication)
• IEntityLoginManager
• UserBase

• Troubleshooting

DevForce provides out-of-the-box integration with ASP.NET security features (Membership, Roles, Profile).  These
features can be used in any application -- Silverlight, desktop, or ASP.NET.  If developing for Silverlight or ASP.NET, choosing
ASP.NET security is often the right choice over a custom security implementation.  ASP.NET security is easy to use, highly
configurable, and well-documented.  See http://www.asp.net/learn/security/ for information on ASP.NET security features.

Settings
In order to use ASP.NET security in DevForce you must set the UseAspNetSecurityServices flag in the web.config or
server .config to enable it.  When enabled, DevForce will use the AspAuthenticatingLoginManager to handle login requests from
clients.

XML<objectServer>
  <serverSettings useAspNetSecurityServices="true" />
</objectServer>

You must also enable AspNetCompatibility  in order to allow the DevForce services to integrate with ASP.NET services. You
set this in the system.serviceModel configuration section. Here's the relevant element in the system.serviceModel section:

XML<system.serviceModel>
  <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
</system.serviceModel>

You must enable the ASP.NET services you wish to use in the system.web configuration section of the config file, as well as
choose the type of authentication wanted. These steps are described below.

Authentication
Authentication in ASP.NET can take either of two flavors – Forms or Windows. For either type of authentication, after a
successful Login completes a UserBase instance representing the user is available on both client and server.

Forms Authentication

Forms authentication involves validating user credentials against a Membership provider.  The default provider uses a SQL
Server Membership database, aspnetdb, to store user information.  ASP.NET also supplies a Membership provider for Active
Directory, or you can write a custom provider.  

To use Forms authentication, specify this authentication mode in the system.web configuration section:

XML<system.web>
  <authentication mode="Forms" />
</system.web>

In your application you can ask the user for login credentials and pass the credential in the Authenticator.Login call. DevForce
will validate the credentials with the ASP.NET membership provider. If the user is authenticated, a FormsAuthenticationTicket
is issued. If you want the ticket to be persistent you should pass a FormsAuthenticationLoginCredential in the Login call, since
this credential allows you to set the persistence flag. 

You can also call Authenticator.Login with a null argument if your application accepts either persistent authentication tickets
or the user has already logged in as part of the larger application.  

http://www.asp.net/learn/security/
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Core~IdeaBlade.Core.Configuration.ServerSettingsElement~UseAspNetSecurityServices.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Web~IdeaBlade.EntityModel.Web.AspAuthenticatingLoginManager.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Web~IdeaBlade.EntityModel.Web.AspAuthenticatingLoginManager~AspNetCompatibilityEnabled.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel.Security~IdeaBlade.EntityModel.Security.Authenticator~Login.html
http://msdn.microsoft.com/en-us/library/se1843z2.aspx
http://drc.ideablade.com/ApiDocumentation/webframe.html?IdeaBlade.EntityModel.Web~IdeaBlade.EntityModel.FormsAuthenticationLoginCredential.html


Documentation - Use ASP.NET security

Page 2 - Last modified on April 03, 2013 17:41

Windows Authentication

When using Windows authentication in ASP.NET the current Windows credentials of the client are transmitted to the server.
 This can be used in intranet environments only.

To use Windows authentication, specify this authentication mode in the system.web configuration section:

XML<system.web>
  <authentication mode="Windows" />
</system.web>

Note that additional configuration changes are required both in IIS and in the communications configuration in order to pass
Windows credentials to the EntityServer.  These changes are discussed in the configuration topic.

On your client, call the Authenticator.Login method with a null credential.  The AspAuthenticatingLoginManager will check
the HttpContext.Current.User for a WindowsPrincipal representing the user, and from that create a UserBase to be returned to
the client.

Roles
You must enable the Role service in the configuration file in order to use this feature:

XML<system.web>
  <roleManager enabled="true" />
</system.web>

With roles enabled, user role information will be obtained from the ASP.NET RoleProvider, and role-based authorization
can be used in your application. Use UserBase.Roles to retrieve all roles for the user, and UserBase.IsInRole() to determine role
membership.

Check the ASP.NET documentation for information on how to create and manage roles and assign users to roles.

Profile
You must enable the Profile service in the configuration file in order to use this feature, and define the profile properties
wanted.  Here's a sample:

XML<system.web>
  <profile enabled="true">
    <properties>
   <!-- Sample properties -->
      <add name="WindowSeat" type="bool" defaultValue="false" />
      <add name="Building" type="string" defaultValue="A" />
    </properties>
  </profile>
</system.web>

You also need to extend the UserBase class with the custom properties from your profile. DevForce will automatically
populate these properties from the Profile if the property name and type match, and the setter is public. Your custom UserBase
class must be serializable, since it will be transmitted between client and server tiers.  

Application Name
If relying on the application name for authentication you must explicitly set it in all membership providers:

XML<system.web>
  <membership>
    <providers>
      <clear/>
      <add name="AspNetSqlMembershipProvider"
           type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
           connectionStringName="LocalSqlServer"
           enablePasswordRetrieval="false"
           enablePasswordReset="true"

http://msdn.microsoft.com/en-us/library/system.web.httpcontext.user.aspx
http://msdn.microsoft.com/en-us/library/system.web.applicationservices.profileservice.aspx


Documentation - Use ASP.NET security

Page 3 - Last modified on April 03, 2013 17:41

           requiresQuestionAndAnswer="true"
           requiresUniqueEmail="false"
           passwordFormat="Hashed"
           maxInvalidPasswordAttempts="5"
           minRequiredPasswordLength="7"
           minRequiredNonalphanumericCharacters="1"
           passwordAttemptWindow="10"
           passwordStrengthRegularExpression=""
           applicationName="/MyDevForceApp" />
    </providers>
  </membership>
</system.web>

Customizations

Credentials (Forms authentication)

You can pass custom credentials, derived from ILoginCredential, LoginCredential, or FormsAuthenticationLoginCredential with
the Login call. With custom credentials, you will generally also want to provide a custom IEntityLoginManager implementation
to receive these credentials. If you wish to take advantage of existing DevForce ASP.NET service integration, you should derive
your class from the AspAuthenticatingLoginManager and override methods as needed.

IEntityLoginManager

You can implement your own IEntityLoginManager or extend the AspAuthenticatingLoginManager to provide custom logic. Any
custom implementation will be used if found.

UserBase

You can also extend the UserBase class. If you enable the ASP.NET Profile service you will want to use a custom UserBase
which contains additional properties retrieved from the profile. DevForce will automatically return your custom UserBase (if
found) without the need to implement a custom AspAuthenticatingLoginManager.

Troubleshooting
"Error using ASP.NET Membership: Unable to connect to SQL Server database." Message received on a Login call.

This will occur if the ASP.NET membership database cannot be found or opened. You must configure the ASP.NET
membership provider if you wish to use ASP.NET security features, and by default the AspNetSqlProvider is used. This will
use the LocalSqlServer connection string from either your web.config or the machine.config. The default connection expects a
SQLExpress database named aspnetdb.mdf. For more information on configuring ASP.NET membership see the membership
tutorials at http://www.asp.net/learn/security/ .

The default in the machine.config:

XML<connectionStrings>
  <add name="LocalSqlServer" connectionString="data source=
    .\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;
    User Instance=true" providerName="System.Data.SqlClient"/>
</connectionStrings>

To override in your web.config, remove the old connection string and add the new connection string.  Here's a sample re-
pointing the connection to the default instance of SQL Server on the machine:

XML<connectionStrings>
  <remove name="LocalSqlServer" />
  <add name="LocalSqlServer" connectionString=
   "Data Source=.;Initial Catalog=aspnetdb;Integrated Security=True;"
    providerName="System.Data.SqlClient" />
</connectionStrings>

Can't find IdeaBlade.EntityModel.Web assembly
This assembly is automatically installed to web applications by the DevForce Server NuGet package.  If you need to reference
this assembly in other application types you can find it under the ..\packages\IdeaBlade.DevForce.Server.7.x.y\tools\lib\net45
folder.

http://www.asp.net/learn/security/

