
Documentation - The entity cache

Page 1 - Last modified on October 02, 2012 11:34

Contents

• Entities in cache are unique
• Add entities to cache
• Remove entities from cache
• Is the entity in cache or not?
• Find entities in cache
• Export cache as an EntityCacheState
• Entity cache structure
• Listen to cache changes

The entity cache is an in-memory container of entity objects that belong to a specific EntityManager. Working with entities
in cache requires little effort on your part. Most queries automatically put retrieved entities into the cache, and when you ask the
EntityManager to save, it saves the changed entities in cache to the datastore.

DevForce automatically decides if subsequent queries can be safely satisfied from cache, and if so, this saves a trip to the
server and improves performance. However, you can always refresh entities in cache if you need to.

Although you will typically work with entities that reside in an EntityManager's cache, you can work with entities that are
not yet in cache and entities that were once in cache but have since been detached - but that's unusual. Many of the important
features of entities, including the ability to navigate to related entities and to save changes, are only available when the entities
reside in cache.

Entities in cache are unique
An entity in cache is identified by its EntityKey and type (e.g. Customer). All entities in cache have unique EntityKeys; a cache
can't have two instances of Customer with the same CustomerID. Of course no one can prevent you from creating two Customer
objects with the same CustomerID. But they can't both be in the same EntityManager cache at the same time.

This is true for deleted entities as well. They may seem invisible but they are there, in cache, until they are saved. Only after
they have been saved successfully do they depart the cache.

Add entities to cache
Entities usually enter the cache as a by-product of a query. This happens automatically without any action on your part (unless
you specifically want to change the behavior).

You can also add entities to cache explictly in three ways:

1. By adding it to an EntityManager with the AddEntity method. An added entity is regarded as a new entity that will be
inserted into the database if saved.

2. By attaching it to an EntityManager with the AttachEntity method. An attached entity is regarded as an existing,
unmodified entity like one that has been queried.

3. By importing it with the EntityManager's ImportEntities method.

Remove entities from cache
Deleting an existing entity doesn't remove it from cache but saving a deleted entity does. The save removes the deleted entity
implicitly. You can remove an entity from cache explicitly as well:

C#manager.RemoveEntity(someCustomer);

VBmanager.RemoveEntity(someCustomer)

Call the EntityManager's Clear method to remove every entity from the cache.

Is the entity in cache or not?
In the code above, someCustomer is a reference to a Customer entity. They entity didn't disappear because we removed it from
cache. It's still an entity. It's now a Detached entity.

We can ask the entity if it is in cache or Detached by inquiring about its entitystate. The following line verifies that
someCustomer was detached after we removed it.

C#Assert.IsTrue(someCustomer.EntityAspect.EntityState.IsDetached());

VBAssert.IsTrue(someCustomer.EntityAspect.EntityState.IsDetached())

EntityState can tell us more than whether the entity is attached or detached.

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/forced-refetch-query
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/EntityKey
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-deletion
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~AddEntity.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~AttachEntity.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~ImportEntities.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entity-add-attach-remove
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~Clear.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityState.html


Documentation - The entity cache

Page 2 - Last modified on October 02, 2012 11:34

 

Find entities in cache
You can explicitly query the cache by using a CacheOnly QueryStrategy .

You can also use FindEntities or FindEntityGraph to search the cache.

C#var foundCust = manager.FindEntity(cust1.EntityAspect.EntityKey);
Assert.AreSame(cust1, foundCust);

VBDim foundCust = manager.FindEntity(cust1.EntityAspect.EntityKey)
Assert.AreSame(cust1, foundCust)

Unlike a query, you can find an entity in cache even if it is deleted.

C#cust1.EntityAspect.Delete(); // marked for deletion
var foundCust =
    manager.FindEntity(cust1.EntityAspect.EntityKey, includeDeleted:true );
Assert.AreSame(cust1, foundCust);

VBcust1.EntityAspect.Delete() ' marked for deletion
Dim foundCust =
    manager.FindEntity(cust1.EntityAspect.EntityKey, includeDeleted:=True )
Assert.AreSame(cust1, foundCust)

You can also find entities in cache using LINQ for objects:

C#var foundCust = manager
    .FindEntities(EntityState.AllButDetached)
    .OfType<Customer>()
    .Where(c => c.CompanyName == "Acme") // cust1's name
   .FirstOrDefault();
Assert.AreSame(cust1, foundCust);

VBDim foundCust = manager _
  .FindEntities(EntityState.AllButDetached) _
  .OfType(Of Customer)() _
  .Where(Function(c) c.CompanyName = "Acme") _
  .FirstOrDefault()
Assert.AreSame(cust1, foundCust)

Notice that

• FindEntities filters by entitystate; here we ask for all cached states (AllButDetached).

• FindEntities returns an IEnumerable; we cast it to IEnumerable of Customer in order to query it with LINQ.
• FindEntities won't return any Detached entities because Detached entities are not associated with an EntityManager.

Export cache as an EntityCacheState
The EntityManager itself is not serializable. But its cache contents are serializable when in the form of an EntityCacheState .
An EntityCacheState is a snapshot of the entities in cache. This snapshot can be handed around inside the client application,
serialized to file, restored from file, even sent to the server as a parameter in a remote server method call. 

To get an EntityCacheState, start with the manager's CacheStateManager . Its GetCacheState method can return an
EntityCacheState with all or only some of the entities in cache. 

In the following unrealistic example, we use an EntityCacheState to copy a cache from one manager to another:

C#// Get EntityCacheState with all cached entities using the CacheStateManager
var ecs = manager1.CacheStateManager.GetCacheState();
// Create 2nd manager
var manager2 = new EntityManager(shouldConnect: false);
// "Restore" into manager2 with the contents of the ECS from manager1
manager2.CacheStateManager.RestoreCacheState(ecs);
// Prove that manager2 has a customer with same ID as cust1
var foundCust = manager2.FindEntity(cust1.EntityAspect.EntityKey);
// But the foundCust is not the same as cust1
// because cust1 still belongs to manager1
Assert.AreNotSame(cust1, foundCust);

VB' Get EntityCacheState with all cached entities using the CacheStateManager

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.QueryStrategy.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~FindEntities.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~FindEntityGraph.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitystate
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityCacheState.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/rsmc-query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager~CacheStateManager.html


Documentation - The entity cache

Page 3 - Last modified on October 02, 2012 11:34

Dim ecs = manager1.CacheStateManager.GetCacheState()
' Create 2nd manager
Dim manager2 = New EntityManager(shouldConnect:= False)
' "Restore" into manager2 with the contents of the ECS from manager1
manager2.CacheStateManager.RestoreCacheState(ecs)
' Prove that manager2 has a customer with same ID as cust1
Dim foundCust = manager2.FindEntity(cust1.EntityAspect.EntityKey)
' But the foundCust is not the same as cust1
' because cust1 still belongs to manager1
Assert.AreNotSame(cust1, foundCust)

A CacheStateManager can also save or restore an EntityCacheState from a file.

Entity cache structure
You rarely need to probe around inside the entity cache itself. Most of the time, the cache works transparently and if you need
to be explicit, the cache-only query and the Find methods are the preferred ways to retrieve entities from cache.

When you need to watch the cache for activity regarding a particular type, it helps to know about EntityGroups . The cache is
organized a collection of EntityGroups. Each group holds the cached entities for a particular type of entity.

You can discover what entity types the manager has seen by asking for its EntityGroups

C#manager = new EntityManager(shouldConnect:false);
Assert.AreEqual(0, manager.GetEntityGroups().Count());

VBmanager = New EntityManager(shouldConnect:=False)
Assert.AreEqual(0, manager.GetEntityGroups().Count())

A new manager's cache has no groups. It acquires groups as different entity types are added to the cache or are referred to by
an entity that was queried into cache.

C#manager = new EntityManager(shouldConnect:false);
manager.AddEntity(new Customer());
Assert.AreEqual(1, manager.GetEntityGroups().Count());

VBmanager = New EntityManager(shouldConnect:=False)
manager.AddEntity(New Customer())
Assert.AreEqual(1, manager.GetEntityGroups().Count())

You can ask for a specific EntityGroup:

C#customerGroup = manager.GetEntityGroup<Customer>();

VBcustomerGroup = manager.GetEntityGroup(Of Customer)()

Clearing the manager's cache (manager.Clear()) removes all groups.

Listen to cache changes
The cache can tell you when an entity has been attached, changed, or detached.

The following fragment shows how to listen for any change to the cache or to cache changes for a particular entity type.

C#// Listen for all changes to cache
var cacheChanges = new List<EntityAction>();
int cacheChangeCount = 0;
manager.EntityChanged += (s, e) => cacheChanges.Add(e.Action);
// Listen for changes to customers in cache
var custChanges = new List<EntityAction>();
int custChangeCount = 0;
var custGrp = manager.GetEntityGroup<Customer>();
custGrp.EntityChanged += (s, e) => custChanges.Add(e.Action);
// Customer changes
var cust = new Customer();
manager.AddEntity(cust);           cacheChangeCount++; custChangeCount++;
cust.CompanyName = "Acme";         cacheChangeCount++; custChangeCount++;
cust.CompanyName = "Beta";         cacheChangeCount++; custChangeCount++;
cust.EntityAspect.AcceptChanges(); cacheChangeCount++; custChangeCount++;
cust.EntityAspect.Delete();        cacheChangeCount++; custChangeCount++;
// Employee change
var emp = new Employee {EmployeeID = 42};

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-cache-locally
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityGroup%601.html


Documentation - The entity cache

Page 4 - Last modified on October 02, 2012 11:34

manager.AttachEntity(emp); cacheChangeCount++;
Assert.AreEqual(cacheChangeCount, cacheChanges.Count(),
    "not all cache changes were signaled");
Assert.AreEqual(custChangeCount, custChanges.Count(),
   "not all cust changes were signaled");
Assert.IsTrue(cacheChangeCount > custChangeCount,
   "should have more cache changes than cust changes");

VB' Listen for all changes to cache
Dim cacheChanges = New List(Of EntityAction)()
Dim cacheChangeCount As Integer = 0
AddHandler manager.EntityChanged, Sub(s, e) cacheChanges.Add(e.Action)
' Listen for changes to customers in cache
Dim custChanges = New List(Of EntityAction)()
Dim custChangeCount As Integer = 0
Dim custGrp = manager.GetEntityGroup(Of Customer)()
AddHandler custGrp.EntityChanged, Sub(s, e) custChanges.Add(e.Action)
' Customer changes
Dim cust = New Customer()
manager.AddEntity(cust)
cacheChangeCount += 1
custChangeCount += 1
cust.CompanyName = "Acme"
cacheChangeCount += 1
custChangeCount += 1
cust.CompanyName = "Beta"
cacheChangeCount += 1
custChangeCount += 1
cust.EntityAspect.AcceptChanges()
cacheChangeCount += 1
custChangeCount += 1
cust.EntityAspect.Delete()
cacheChangeCount += 1
custChangeCount += 1
' Employee change
Dim emp = New Employee With {.EmployeeID = 42}
manager.AttachEntity(emp)
cacheChangeCount += 1
Assert.AreEqual(cacheChangeCount, cacheChanges.Count(), "not all cache changes were signaled")
Assert.AreEqual(custChangeCount, custChanges.Count(), "not all cust changes were signaled")


