
Documentation - Stored procedure queries

Page 1 - Last modified on August 15, 2012 17:21

Contents

• Stored procedure queries
• Stored procedure entity navigation

DevForce supports querying for entities using stored procedure queries. The need arises most frequently when we require
the entities resulting from an extraordinarily complex query involving large volumes of intermediate data that are not themselves
required on the client.

One might imagine a multi-step query that touched several tables, performed multi-way joins, ordered and aggregated the
intermediate results, and compared values with many thousands of records, all so as to return a handful of qualifying results.
All of the other data were needed only to satisfy the query; the user won’t see any of them and there is no point to transmitting
them to the client.

This is a clear case for a stored procedure because we can and should maximize performance by performing all operations as
close to the data source as possible.

Chances are that the entities returned by the stored procedure are entities we already know. That procedure could be just an
especially resource-consuming query for Order entities that we retrieve and save in the usual way under normal circumstances.

TheStoredProcQuery is perfect for this situation. We define such a query, identify Order as the query return type, and turn it
loose on the database. We accept the sproc-selected Order objects and work with them in our typical merry way.

Note that a stored procedure query, by its nature, must be executed by the database: we can’t run it against the entity cache.
So we may not invoke it while the application is running offline.

Stored procedure queries
Suppose your data source includes a stored procedure named SalesByYear. It is defined as follows: (This example uses SQL
Server TSQL, but any stored procedure than is supported via the Entity Framework will also be supported by DevForce).

TSQL ALTER procedure "SalesbyYear"

@Beginning_Date DateTime, @Ending_Date DateTime

AS

SELECT OrderSummary.ShippedDate, OrderSummary.id, "Order Subtotals".Subtotal, DATENAME(yy,ShippedDate) AS Year

FROM OrderSummary INNER JOIN "Order Subtotals"

ON OrderSummary.Id = "Order Subtotals".OrderSummaryId

WHERE OrderSummary.ShippedDate Between @Beginning_Date And @Ending_Date

Along with tables and views, stored procedures can be added to the model using the EDM Designer. Adding the stored
procedure above results in the following Function element in the schema (SSDL) section of the Entity Model file:

XML <Function Name="SalesbyYear" Schema="dbo" Aggregate="false"
 BuiltIn="false" NiladicFunction="false" IsComposable="false"
 ParameterTypeSemantics="AllowImplicitConversion">
 <Parameter Name="Beginning_Date" Type="datetime" Mode="In" />
 <Parameter Name="Ending_Date" Type="datetime" Mode="In" />
</Function>

To make this conveniently available for calling directly off of our entitymanager (as you would equally have to do to make
it available on the ADO.NET ObjectContext), you must also add a FunctionImport element to the conceptual model, using the
EDM Designer (see http://msdn.microsoft.com/en-us/library/bb896231.aspx for more information on the mechanics of adding
stored procedures to the Entity Model). The resulting FunctionImport would be defined as follows within the CSDL portion of
the model:

XML <FunctionImport Name="GetSalesByYear" EntitySet=
 "SalesByYearResults" ReturnType=
 "Collection(IdeaBladeTest1Model.EF.SalesbyYear)">
 <Parameter Name="Beginning_Date" Type="DateTime" Mode="In" />
 <Parameter Name="Ending_Date" Type="DateTime" Mode="In" />
</FunctionImport>

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entities
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.StoredProcQuery.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/start-entity-cache
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Entity+Framework
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/edm-designer
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://msdn.microsoft.com/en-us/library/bb896231.aspx

Documentation - Stored procedure queries

Page 2 - Last modified on August 15, 2012 17:21

DevForce will generate query and execute methods into your EntityManager for every function import in the conceptual
model. In a Silverlight application, you’d call the query method to construct a query and then execute that query asynchronously;
the execute method cannot be used because it will execute the query synchronously.

C#public IEnumerable<IdeaBladeTest1Model.SalesbyYear> GetSalesByYear(
 Nullable<DateTime> Beginning_Date, Nullable<DateTime> Ending_Date) {}
public StoredProcQuery GetSalesByYearQuery(
 Nullable<DateTime> Beginning_Date, Nullable<DateTime> Ending_Date) {}

VBPublic Function GetSalesByYear(ByVal Beginning_Date? As Date, _
 ByVal Ending_Date? As Date) As _
 IEnumerable(Of IdeaBladeTest1Model.SalesbyYear)
End Function
Public Function GetSalesByYearQuery(ByVal Beginning_Date? As Date, _
 ByVal Ending_Date? As Date) As StoredProcQuery
End Function

Having done all of that in your Entity Model, you can now use the resultant methods as shown below:

C#var _em1 = new IdeaBladeTest1Entities();
DateTime dt1 = DateTime.Parse("1/1/1990");
DateTime dt2 = DateTime.Parse("1/1/2000");
var results = _em1.GetSalesByYear(dt1, dt2);
// Or asynchronously
IEnumerable results;
var q = _em1.GetSalesByYearQuery(dt1, dt2);
var op = _em1.ExecuteQueryAsync(q);
op.Completed += (o, e) => {
 results = e.Results;
};

VBDim _em1 = New IdeaBladeTest1Entities()
Dim dt1 As Date = Date.Parse("1/1/1990")
Dim dt2 As Date = Date.Parse("1/1/2000")
Dim results = _em1.GetSalesByYear(dt1, dt2)
' Or asynchronously
Dim results As IEnumerable
Dim q = _em1.GetSalesByYearQuery(dt1, dt2)
Dim op = _em1.ExecuteQueryAsync(q)
AddHandler op.Completed, Sub(o, e) results = e.Results

Stored procedure entity navigation
Dot Navigation is a bit tricky for entities that are defined only by a stored procedure. Navigating to these entities via navigation
properties is not supported, since EF itself does not support mapping functions for an entity to a query function (as it does for
insert, update and delete functions). You can of course define custom properties within your entities to perform this navigation
via a stored procedure query. Navigating from these stored-procedure backed entities to table-backed entities is not a problem.

