
Documentation - Real-time trace viewers

Page 1 - Last modified on March 31, 2016 14:59

Contents

• Trace publishing
• Trace viewer in Silverlight
• Trace viewer utility
• Using a trace viewer in your application

The debug log is a historical record of an application's activities: it always starts when the application starts, and is
continuously appended to. But DevForce also provides several "trace viewers", components which provide a real-time view of
tracing as it occurs.

A trace viewer can be started and stopped at any time, run as a standalone utility or as part of your application, and view
tracing messages from different sources.

Before we launch into a discussion of the trace viewer utilities we need to take a slight detour and discuss trace "publishing"
to help understand how a viewer works and what it can view.

Trace publishing
Trace and debug activity within a DevForce application uses the "publish-subscribe" metaphor: messages are always published,
and any number of subscribers may listen in. This publishing is generally local to the application itself and a subscriber will
listen only for its own activity.

These messages can also be broadcast, or published, as part of a "trace publisher" service, to make the messages available
to remote subscribers. (For those interested, the publisher is a WCF service.)  By default, the console and Windows Service
versions of the server (ServerConsole.exe and ServerService.exe) publish their messages.  In a web application, the service can be
started by calling the following, generally in the global.asax:

C#IdeaBlade.Core.TracePublisher.LocalInstance.MakeRemotable();

VBIdeaBlade.Core.TracePublisher.LocalInstance.MakeRemotable()

A client application can also publish its trace activity, using the same technique.

As a service, the publisher must have a name and port.  The default address in DevForce is net.tcp://localhost:9922/
TracePublisher: where net.tcp is the protocol, 9922 is the port, and TracePublisher is the service name.

Remember the logging element in the ideablade.configuration?  Now we see where some of the "advanced" properties come
into play:

C# label="XML"}}
  <logging logFile="DevForceDebugLog.xml" port="9922" serviceName="TracePublisher" />

Both port and serviceName can be modified to override the defaults.  You can also override the defaults when calling
MakeRemotable, passing a port number and service name.

Why change the defaults?  If multiple applications or services will be publishing trace messages on the same machine, you
must change either the port or service name in order to provide a unique URL.  

Now back to the trace viewers.  They will "subscribe" to a publisher to view its messages.  That publisher is usually a service
as described above, but it can also be the local publisher.    

How does the ITraceLogger compare with a "subscriber"? The ITraceLogger will only receive messages from the application it's
a part of, it will never automatically receive messages from another trace publisher. The ITraceLogger also will receive messages
throughout the life of the application, it can't subscribe and unsubscribe.

Trace viewer in Silverlight
A debug log is not generated for a Silverlight client application but tracing and debugging messages are still generated.  You
can listen for these messages with a custom ITraceLogger, and you can also use a simple trace viewer user control sample
we provide. The sample viewer, when "dropped" into an existing window, provides a simple real-time display of tracing and
debugging messages generated on the client.  

Note that messages from the server will not be shown by this viewer.   

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/custom-logger
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-trace-viewer-silverlight


Documentation - Real-time trace viewers

Page 2 - Last modified on March 31, 2016 14:59

Trace viewer utility
To use a trace viewer as a standalone executable subscribed to a remote publisher, launch the executable WPFTraceViewer.exe.
As you might guess from the name, this is a WPF implementation of a viewer with basic functionality.  The utility can be found
in the Tools sub-folder of the DevForce installation.  The WPFToolkit assembly is needed to run the WPFTraceViewer
utilty.  To download the toolkit see wpf.codeplex.com.

By default the trace viewer will attempt to subscribe to the well-known address mentioned above: net.tcp://localhost:9922/
TracePublisher. You can, however, subscribe to (and unsubscribe from) any publisher.

The WPFTraceViewer also accepts a command line argument for the URL of the publisher, for example:
   wpftraceviewer.exe "net.tcp://localhost:9001/mypublisher" 

Using a trace viewer in your application
You can also use a trace viewer directly in your Windows application, with the viewer opened as a new window.

To do so, add a reference to WPFTraceViewer.exe to your UI project. For example, right-click the references node in your
desired UI project, and select Add Reference. On the Add Reference dialog, select the Browse tab, then browse to the file and
click OK. 

To launch the WPF viewer:

C#IdeaBlade.DevTools.WPFTraceViewer.WPFTraceViewer tv = new IdeaBlade.DevTools.WPFTraceViewer.WPFTraceViewer();
tv.Show();

VBDim tv As New IdeaBlade.DevTools.WPFTraceViewer.WPFTraceViewer()
tv.Show()

Constuctor overloads allow the trace publisher URL to be specified, but by default the viewer will subscribe to the local
publisher in the application.

To see this in action see WPF Trace Viewer code sample.

http://wpf.codeplex.com
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-trace-viewer-wpf

