
Documentation - Understand and troubleshoot timeouts

Page 1 - Last modified on August 15, 2012 17:20

Contents

• Database / transaction timeouts
• Query
• Saves

• Communication timeouts
• IIS

There are several timeouts which can affect your application. Learning to understand and troubleshoot timeouts will help
to quickly diagnose and fix problems.

If you've received a "timeout" exception, the first question to ask is "Where is it coming from?"  In a n-tier application the
timeout might come from the database server, the communications infrastructure (WCF), or even IIS.  In a 2-tier application not
hosted in ASP.NET, the timeout exception will originate from the database.

Any exception you receive will be an EntityServerException or one of its subtypes.  

Database / transaction timeouts
You might receive a database-related timeout during either a query or save.  

Query

• You receive an EntityServerException with a FailureType of Data and OperationType of Query.  The message itself
may be less than helpful, it might say something like "An error occurred while executing the command definition...", or
maybe it will say "Timeout expired".  In a 2-tier application you can drill into the inner exceptions to see the underlying
database exception and message.  In SQL Server that will be a System.Data.SqlClient.SqlException with a message
which begins with "Timeout expired."  In an n-tier application, you'll need to check the RemoteExceptionName and
RemoteExceptionDetails to find that information.

To fix this problem, modify the query's CommandTimeout.  Every query contains a CommandTimeout property which
you can set to override the provider's default query timeout value.  With SQL Server, that default timeout is 30 seconds.   

• If the CommandTimeout is sufficient but the transaction timeout is not, you'll get an EntityServerException with a message
stating either "The transaction has aborted" or "Transaction timeout".  In some cases the error message will state "The
transaction associated with the current connection has completed but has not been disposed."  The FailureType is Other
in all cases.

By default, queries will use TransactionSettings with a UseTransactionScope option set to true, which indicates that
the query should be wrapped in a TransactionScope.  When a query is wrapped in a TransactionScope then the Timeout
value on the TransactionSettings determines the allowed time for the overall transaction.  The TransactionSettings can be
passed with the QueryStrategy or set on the EntityManager.DefaultQueryStrategy.  The default timeout value is 1 minute.
 If your query does not require a TransactionScope you can set UseTransactionScope to false.

Saves

• You receive an EntityManagerSaveException with a FailureType of Data and an OperationType of Save.  You'll need
to drill into the details of the exception to see the underlying System.TimeoutException with the "Transaction Timeout"
message. 

You cannot set the command timeout for individual inserts, updates and deletes performed as part of the save
processing.  Here only the TransactionSettings.Timeout can be used to alter the processing timeout.  You can set the
desired timeout on the SaveOptions passed from the client, or on the EntityServer with the TransactionSettings.Default
singleton.  The default timeout is 1 minute.

• You receive an EntityManagerSaveException with a FailureType of Other and an OperationType of Save.  The error
message states "The transaction associated with the current connection has completed but has not been disposed."  

This will occur when the outer TransactionScope times out before the inner database transaction completes.  To
resolve the problem set a larger timeout value on the SaveOptions passed from the client, or on the EntityServer with the
TransactionSettings.Default singleton.  The default timeout is 1 minute.

Communication timeouts
Most communication-related timeout error messages will state something along the lines of "The HTTP request to 'http://
yourserver/EntityServer.svc' has exceeded the allotted timeout."  If you drill into the exception details you'll usually see a
System.TimeoutException wrapping a System.Net.WebException.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/understand-entityserverexception
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.IEntityQuery~CommandTimeout.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.TransactionSettings.html
http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.aspx
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/query-strategy
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.EntityModel~IdeaBlade.EntityModel.EntityManager.DefaultQueryStrategy.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-methods#HTheSaveOptionsclass
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/save-methods#HTheSaveOptionsclass


Documentation - Understand and troubleshoot timeouts

Page 2 - Last modified on August 15, 2012 17:20

You might get a timeout for any type of request to the EntityServer, and they can occur regardless of whether the request was
synchronous or asynchronous.

The default SendTimeout on the client is 1 minute, and it's this timeout that is most often the cause of communication
timeouts.  You can override the default value in two ways - via either configuration or code.  See the advanced configuration
topic for more information.  

There are additional timeout settings available on both client and server, but they don't often need to be adjusted from their
default values.  If you are saving large amounts of data then you might find that in addition to the client's SendTimeout you also
need to adjust the server's ReceiveTimeout.

In your 2-tier application you obviously don't need to be concerned with communications exceptions.

IIS
Even when your WCF timeouts seem sufficient, you might receive an exception stating that "The operation has timed out.".
 The problem might be in another setting applicable only when hosting the EntityServer under IIS, the executionTimeout.  The
default value is 110 seconds, and can be modified via the web.config:

XML<system.web>
   <httpRuntime executionTimeout="110"/>
</system.web>

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-client-servicemodel#HChangetimeoutvalues
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/code-sample-custom-client-configuration#HOverridecommunicationtimeouts
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-advanced-configuration
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/deploy-advanced-configuration

