Contents

Documentation - Configure a verifier

¢ Properties of the VerifierOptions class

¢ ExecutionModes

* BeforeSet Versus AfterSet Execution

¢ ErrorNotificationMode

¢ ShouldExitOnBeforeSetError

¢ ErrorContinuationMode
* TreatWarningsAsErrors

* ShouldTreatEmptyString AsNull

* RawVerifierOptions

Much of the work involved in configuring a verifier is performed via the VerifierOptions class.

This class collects a number of settings that affect a verifier’s behavior, such as when it it is run and how it handles exceptions.
An instance of the type is available as a property on the VerifierEngine class via the DefaultVerifierOptions; property and also on

the Verifier, VerifierArgs, and VerifierResults classes as the VerifierOptions property.

VerifierOptions are "inherited" or "defaulted" from the VerifierEngine down to all of a VerifierEngine's Verifiers and
VerifierArgs and finally to the VerifierResults of each Verifier. This will be described in more detail later.

Properties of the VerifierOptions class

Property

ExecutionModes

ErrorNotificationMode

ShouldExitOnBeforeSetError

ErrorContinuationMode

TreatWarningsAsErrors

ShouldTreatEmptyStringAsNull

Raw VerifierOptions

Description

Gets or sets the conditions
under which which a verifier

is executed. See the material
immediately below the table for
more information about these.

Used to determine whether
the Entity should throw errors
during a property verification
or raise the errors thru the
INotifyDataErrorInfo interface
instead.

Whether or not to perform the
'set’ of a proposed value when
an error occurs. Note that this
setting is only applicable with
'‘BeforeSet' ExecutionModes.

Gets or sets whether a failure

in this verifier should stop the
execution of the remainder of
the batch in which this verifier is
executing

Whether to treat warnings as
errors

For required value validation, this
determines whether empty strings

are treated as if they were null.

A version of this same
VerifierOptions instance without
"inheritence" interpretation.
May be used to determine which
properties are actually inherited

Type

Enum

Enum

Boolean

Enum

Boolean

Boolean

VerifierOptions

System Default Value

VerifierExecutionModes. InstanceAndOnBeforeSetTriggers

VerifierErrorNotificationMode. Notify

false

VerifierErrorContinuationMode. Continue

false

true

N/A

The system default values shown in the table above are the default settings for the properties of DefaultVerifierOptions.

All VerifierOptions properties can be inherited from a parent class and by default do so. A VerifierEngine is parent to any
Verifiers contained within it. A Verifier, in turn, is parent to any VerifierResults resulting from its execution.

By default, every verifier is created with a VerifierOptions instance is created with every property conceptually set to inherit
its value from its parent as described below:

All of enum-valued property types on VerifierOptions (VerifierExecutionModes, VerifierErrorNotificationMode and
VerifierErrorContinuationMode) each have a special Inherit enumeration value that may be used to indicate inheritance from a
parent. Properties that are of type bool? (nullable booleans) may be set to null to accomplish the same result.

Page 1 - Last modified on August 15, 2012 17:21

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine~DefaultVerifierOptions.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.Verifier.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierArgs.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierResults.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~ExecutionModes.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~ErrorNotificationMode.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~ShouldExitOnBeforeSetError.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~ErrorContinuationMode.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~TreatWarningsAsErrors.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~ShouldTreatEmptyStringAsNull.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~RawVerifierOptions.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine~DefaultVerifierOptions.html

Documentation - Configure a verifier

This means that if any property on a VerifierEngine's DefaultVerifierOptions is changed, then by default, every Verifier and
VerifierResult will inherit this change. And since Verifier and VerifierResult have their own VerifierOptions property, any aspect
of VerifierOptions can be overwritten (changed from 'Inherit' to another value) for any given Verifier or VerifierResult.

It's important to remember that your application contains at least two VerifierEngines: one on the client and one on the server.
If you modify any default options you must be sure to do so on both client and server when appropriate.

ExecutionModes

The determination of when and how a verifier is executed is controlled via the

IdeaBlade.Validation. VerifierOptions. ExecutionModes and IdeaBlade.Validation. Verifier. TriggerLinks properties on each verifier.

A verifier can be executed either

1. in response to a single change (e.g., of a property value); or
2. in the context of validating an entire object.

The first type of validation listed above is known as a property value validation. The second is known as an instance
validation.

We would apply a property value validation when (for example) a user was changing, or had just changed, the HireDate on an
employee. At that time we would only want to run those validation tests whose outcome we feel may have been affected by this
specific change. Our goal would be to provide the end user with instant feedback about their change. In most cases, it will never
be easier for them to correct a mistake than immediately after making it!

Property value validations can be subdivided into before and after categories. A BeforeSet validation is applied before a
proposed new property value is actually pushed into the business object. This can be used to prevent invalid data from ever
getting into the business object. An AfferSet validation is applied after the new value is pushed into the business object. The
ShouldExitOnBeforeSetError and ErrorNotificationMode properties described later can be used to control further details
involving a property value validation.

Instance validation describes an operation that completely validates an entire entity, applying all relevant validation rules,
whether those rules apply to individual properties of that entity, to a combination of its properties (the validity of whose values
must be assessed in relation to each other), or in some other way to the entity as a whole.

We might perform an instance validation, for example, on a particular instance of an Employee before permitting it to be
saved to the database. This would likely require performing validation tests on a number of individual properties of the employee
object; it might also require testing the state of related objects (such as the Orders written by that Employee). Only if the entire
suite of tests required to fully validate the Employee were passed would we give the okay to save it to the database.

Note that instance validation would be unnecessary if we could really be sure that every change affecting our Employee would
be addressed by an appropriate set of property value validations. In practice this can be very difficult, or even impossible, to
ensure. What if, for example, our Employee is changed by some other application which doesn’t apply the same rules that our
does? What if it is changed directly in the database by someone with access to that? Even when we can guarantee that neither
of those things happen, the mechanisms by which a given entity can be changed inside a single application can become quite
complex over time. For all of those reasons, developers commonly perform instance validation at such key junctures as when an
entity is submitted for saving. It’s an important last line of defense against invalid data.

It is common for a given verifier to be applicable during instance validation as well as during property value validation. Every
verifier comes with information about the situations in which it should be executed, via its VerifierOptions. ExecutionModes
property. That property takes values from a VerifierExecutionModes enumeration whose choices permit you to make your
verifier run in any and all of the circumstances you deem appropriate. The values in the VerifierExecutionModes enumeration,
and their impacts, are as follows:

Enum value Description
Instance Run during instance validation.
OnBeforeSetTriggers Run in response to designated triggers, before the proposed value has

been pushed into the business object.

OnAfterSetTriggers Run in response to designated triggers, affer the proposed value has
been pushed into the business object.

InstanceAndOnBeforeSetTriggers Run during instance validation and in response to designated triggers
(usually property value changes), before the proposed value is pushed
into the business object.

InstanceAndOnAfterSetTriggers Run during instance validation and in response to designated triggers
(usually property value changes), after the proposed value has been
pushed into the business object.

Page 2 - Last modified on August 15, 2012 17:21

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierOptions~ExecutionModes.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.Verifier~TriggerLinks.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierExecutionModes.html

Documentation - Configure a verifier

All Run during instance verification and in response to designated
triggers (both before the proposed value is pushed into the business
object, and also after it has been pushed into the business object).

Disabled Do not run.

Inherit Inherit the ExecutionModes setting from the type’s parent (Verifier if
a VerifierResult, and VerifierEngine if a Verifier).

Settings of InstanceAndOnBeforeSetTriggers and InstanceAndOnAfterSetTriggersare by far this most common (after Inherit).
All is a particularly uncommon setting because it orders triggered execution both before and immediately after a new value
is pushed into a business object. However, a verifier, as it so happens, has access to information about the triggering context
in which it is being run (i.e., before or after), so it is possible to include within a single verifier logic that will only be applied
in one context or another. From this arises the possibility that you, the developer, might want such a verifier to run in both
triggering contexts.

BeforeSet Versus AfterSet Execution
This topic deserves special discussion, as the choice between these two execution modes can be difficult.

All other things being equal, it is desirable never to allow invalid values into a business object in the first place. If all
things were equal, one would use OnBeforeSetTriggers or InstanceAndOnBeforeSetTriggers as the ExecutionModes for
all property-level verifiers. However, in practice, these settings can cause problems, especially before an application has
been fully fleshed out. For example, in the user interface, a BeforeSet verifier can demand that the end user fix a bad
value entered for a property right then and there, before moving on to any other work -- even if she hasn’t the faintest idea
what to change the bad value 0. [Note that this will NOT occur where the ErrorNotificationMode is set to Notify (the
default).] In such as case, in order to handle such issues in a manner that’s friendly to the end user then you may want to use
VerifierExecutionModes.InstanceAndOnAfterSetTriggers.

ErrorNotificationMode

Regardless of whether validation is performed before or after a property is set, the next issue deals with how to handle any
validation errors. The VerifierErrorNotificationMode enumeration offers the following choices:

Enum value Description

Notify Causes notification through the INotifyDataErrorinfo and
IDataErrorinfo interfaces.

ThrowException Throws an exception.

NotifyAndThrowException Notify using INotifyDataErrorInfo and IDataErrorInfo interfaces and

then throw an exception.

Inherit Inherit the ErrorNotificatioMode from the parent.

Basically, there are two choices, either make use of the INotifyDataErrorInfo/IDataErrorInfo interfaces or throw an
exception. A third choice, that of doing both, is available but is rarely used. We tend to recommend going with the use of
notification interfaces, although there are use cases where throwing an exception makes a good deal of sense. You can even mix
and match with some verifiers set up one way and others another way.

ShouldExitOnBeforeSetError

In the event that one of the ''BeforeSet'' ErrorNotificationModes is selected AND you have an ErrorNotificatioMode of
Notify, you have one further choice:

* Do you want the property setter to exit before actually setting the value in the case of a validation error?

Note that exiting simply means that the property never gets set, but no error is thrown. This can be very handy, if you want
to insure that "bad" values never make it into your entity but at the same time you really want to use notification semantics and
don't want any errors thrown within your property setters.

Setting this value to null (Nothing in VB) is the equivalent of setting any of the enumerated values to "Inherit".

ErrorContinuationMode

Within an instance validation, many individual verifiers may need to be executed in sequence. The ErrorContinuationMode
allows any individual validation to stop the process. This is often desirable if we know that the failure (or success) of one
validation means that we can short-circuit the need for further validations of the instance. The ErrorContinuationMode
enumeration consists of the following values:

Page 3 - Last modified on August 15, 2012 17:21

http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierErrorNotificationMode.html

Documentation - Configure a verifier

Enum value Description

Stop Stop any further verifier execution within this batch if an error is
encountered.

Continue Continue executing other verifiers in this batch even if an error is

encountered (the default).

Inherit Inherit the ErrorContinuationMode from the parent.

TreatWarningsAsErrors

The execution of any verifier results in a VerifierResult instance. Each VerifierResult has a VerifierResultCode that describes
the type of the result. Setting the TreatWarningsAsErrors to true, will cause any VerifierResults with a VerifierResultCode of
OkWarning to be treated as validation errors.

Should TreatEmptyStringAsNull

The ShouldTreatEmptyString AsNull property is applicable in the context of string length and/or required value validations.

The idea is to provide the developer with the ability to consider an "Empty string" as a null for the purposes of performing
required value validations. This is usually a good practice, because it is very difficult for a user of an application to "see" the
difference in a text box between a null value and an empty string, and having an empty string pass validation whereas a null
value fails it can be very confusing.

The default setting is True - this means a property will fail validation if it is required and the value is an empty string. When
changing the default option be sure to make the change on both client and server; this ensures that both client-side property
validation and server-side instance validation performed during a save use the same settings.

Raw VerifierOptions

An "uninterpreted" version of any VerifierOptions instance is available via the Raw VerifierOptions property. The version
returned by this property will not perform any interpretation of the property values, so you may use this version to determine
whether any given property is actually inherited or not.

Page 4 - Last modified on August 15, 2012 17:21

