Documentation - Overview

Contents

* The VerifierEngine
¢ Define Verifiers

* Add Verifiers to a VerifierEngine
¢ Configure Validation
¢ Perform a validation
* Property Validation
¢ Instance Validation
e Result of a validation

We provide a brief overview of validation within DevForce here. Subsequent topics will discuss each area in more depth.

The VerifierEngine

All validation in DevForce is performed by a VerifierEngine. Every EntityManager has its own instance of a VerifierEngine,
accessible via its VerifierEngine property. VerifierEngines can also be created and used independently. The VerifierEngine is not
thread-safe, but with some care may be shared by multiple EntityManagers.

A VerifierEngine contains a collection of verifiers. A verifier is an instance of some subclass of the Verifier class.

The VerifierEngine also provides methods that allow verifiers to be evaluated sequentially against an instance of a .NET class.
This is the process of "performing a validation." The object to be validated can be a DevForce entity but it doesn’t have to be;
the object can be of any concrete type.

Each verifier execution produces a VerifierResult. The engine accumulates these results in a VerifierResultCollection as it
proceeds and returns the entire collection as its own result.

Define Verifiers

Most verifiers are responsible for the validation a single property on a single target type. Validations of this form are usually
specified by marking up the target type's properties with a variety of validation attributes. These validation attributes can either
have been automatically generated on the entity by DevForce during code generation, or may have been added directly to the
class by the developer using custom attributes.

DevForce also provides a number of pre-defined verifiers and support for custom verifiers.

Add Verifiers to a VerifierEngine

Verifiers can be added to a VerifierEngine in two ways:

* The engine can discover them automatically by inspecting the .NET types for verifier attributes.
¢ The developer can add them programmatically.

The application can combine these methods.

Whenever a VerifierEngine is asked to perform validation on a type, its first step is to discover all of the verifiers that are
applicable to that type. Some of these verifiers are defined using property level attributes that may be applied to the type being
validated; but verifiers may also be defined in .NET code, and even in XML. The VerifierEngine discovers all of these verifiers,
and creates instances of each in an internal collection. These instances will be used to perform the actual validations.

Configure Validation

Each verifier instance has its own properties which tell the VerifierEngine the conditions under which it is applicable. For
example, you can define a verifier so that it runs before a proposed new property value is pushed into the business object; or
after; or even both (though that is unusual). You also want most verifiers to run whenever an entire instance of a type is being
validated. To specify these things, you specify the ExecutionModes on an instance of the VerifierOptions type.

Other configuration options allow you to control error handling and how empty strings are handled.

Perform a validation

The VerifierEngine has several overloads available to actually cause a validation to occur. The methods can be called directly, but
they will also be called automatically by DevForce at the following points:

* Whenever any entity within an EntityManager has any of its property values changed. In this case the EntityManager sees
the change to the entity and internally calls its VerifierEngine to perform the validation.

Page 1 - Last modified on August 15, 2012 17:20


http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierEngine.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entitymanager
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.Verifier.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierResult.html
http://drc.ideablade.com/ApiDocumentation750/webframe.html?IdeaBlade.Validation~IdeaBlade.Validation.VerifierResultCollection.html
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-generate-attributes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-add-custom-attributes
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-predefined
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-create-custom-verifier
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-discover
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-discover#HAddingorremovingaverifierprogrammatically
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/validation-configure

Documentation - Overview

* Whenever an entity is saved, the EntityServer validates every entity before it is saved. If any do not validate, the save is
canceled.

See the perform a validation topic for additional information.

Property Validation

In the case of a change to a property value, we really only want to perform the minimum number of validations that are relevant
to the property being changed. This is called a property validation. Using its VerifierEngine, the EntityManager will perform
automatic "before" and "after" property validation as property setters are invoked.

Instance Validation

During a save DevForce will validate each entity. This will mean validating every property along with any validations that cross
properties or involve related objects. This is referred to as an instance validation.

This instance validation is automatically performed by DevForce on the EntityServer. Instance validation may also be
performed on demand by calling VerifierEngine. Execute.

The server-side validation performed during a save has some important considerations, most importantly that any application,
whether n-tier or 2-tier, will always have at least two VerifierEngines:

* One within the local EntityManager;
¢ and one within the EntitServer's EM.

It's important to have this in mind when adding verifiers or modifying configuration so that your settings apply to both
"client" and "server".

For instance, if setting:

I myEM. VerifierEngine. DefaultVerifierOptions.ShouldTreatEmptyString AsNull = false;

nn

in the client application, validation will not fail when setting a non-nullable property to "" (empty string).

However, when myEM.SaveChanges() is called, validation will be performed once more in the EntityServer and if
ShouldTreatEmptyStringAsNull is not explicitly set to false there, the save will fail.

In the EntityServer, we can set validation in the Savelnterceptor ValidateSave method:

protected override bool ValidateSave() {
EntityManager. VerifierEngine. DefaultVerifierOptions.ShouldTreatEmpty String AsNull = false;
return base.ValidateSave();

}

See the validate on the server topic for more information on server-side validation.

Result of a validation

Regardless of which form of validation is performed the result of a validation is always a VerifierResultsCollection which as
the name suggests, is a collection of VerifierResults. Each VerifierResult contains a reference to the object being validated,
the validation instance used to perform the validation and most importantly the "result” of the validation. VerifierResults that
represent "errors" are automatically added to each entities EntityAspect. ValidationErrors collection.

Page 2 - Last modified on August 15, 2012 17:20


http://drc.ideablade.com/devforce-2012/bin/view/Documentation/entityserver
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/executing-a-verifier
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/server-side-validation

