
Documentation - Write a custom constructor

Page 1 - Last modified on August 15, 2012 17:23

Contents

• Enforce invariant constraints in constructors
• Don't initialize every property
• When to use constructor parameters
• A default parameterless constructor is required
• You can hide the default constructor
• Don't add unnecessary constructor parameters

You should write a custom constructor if any entity properties have required values.

Enforce invariant constraints in constructors
It's a best practice to ensure (to the degree possible) that a new entity is in a valid state. You probably have business rules that
stipulate which property values are always required and what values they must have when they are created. The best place to
enforce those rules is in the entity constructor.

You should strive to have a valid entity at all times. You should feel a bit uncomfortable when you can't reach that goal. For
example, if a Customer is required always to have a real status code,  we might write this constructor:

C#public Customer()
{
  Status = InitialStatus;
}

VBPublic Sub New()
  Status = InitialStatus
End Sub

One sure invariant: every entity must have an EntityKey. You should set the EntityKey in the constructor unless it DevForce
will be setting it automatically.

Don't initialize every property
Sometimes its better to leave properties alone. The Customer entity presumably has a Name property. If the Customer name is
allowed to be empty while in memory, don't initialize it.

This is a gray area. The customer name probably has a "is required" validation rule. You won't be able to save the customer
without a name. You could initialize it in the constructor with a phony name such as "No Name". Technically the customer now
passes the name-is-required test. This isn't substantively better than a null or empty string and you risk polluting the database
with lots of "No Name" customers.
Most validation rules govern the state of the entity when it is saved. When a locally-invalid entity is harmless and there is no
satisfactory way to enforce the validity check, let it go.

On the other hand, when the validation rule expresses an invariant constraint - a constraint that must be true at all times - then
make sure you set the property value in the constructor.

When to use constructor parameters
Consider writing constructors that take required parameters when essential values can't be determined within the constructor
alone.

Imagine this time that a valid customer name is required at all times. It may never be null. The constructor can't possibly
know the actual name. Therefore, we require the name to be passed in when creating the customer.

C#public Customer(string name)
{
   EnsureValidName(Name); // throws if null, empty, or bad
  Name = name;  
}

VBPublic Sub New(ByVal name As String)
  EnsureValidName(Name) ' throws if null, empty, or bad
 Name = name
End Sub

Ehy do we need "EnsureValidName"? Won't the property setter invoke validation and catch a bad name? No it won't.
Property setters validate input only when the entity is attached to an EntityManager. This entity is not yet attached to an
EntityManager. The EnsureValidName method can validate the name using its own VerifierEngine if you wish.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/create-set-entitykey-constructor
http://drc.ideablade.com/devforce-2012/bin/view/Documentation/Validate
http://drc.ideablade.com/devforce-2012/bin/create/Documentation/VerifierEngine?parent=Documentation.write-a-custom-constructor


Documentation - Write a custom constructor

Page 2 - Last modified on August 15, 2012 17:23

 

A default parameterless constructor is required
When you add a constructor with parameters, you must also add a default parameterless constructor. DevForce needs that
default constructor. 

DevForce materializes entities from query results. To "materialize" an entity, DevForce "reconsititutes" it from server
data. Sometimes DevForce can reconstitute it through a de-serialization process that by-passes all constructors. In Silverlight,
DevForce reconstitutes a queried entity by calling its default, parameterless constructor.

Never assume that your constructor will be called when an entity is reconstituted by query ... or by any other process. DevForce
may or may not call the constructor. Don't guess.

In this example, Customer has a default constructor for entity reconstitution and a parameterized constructor for entity
creation:

C#internal Customer() {} // required default constructor
public Customer(string name)
{
   EnsureValidName(Name); // throws if null, empty, or bad
  Name = name;  
}

VBFriend Sub New() ' required default constructor
End Sub
Public Sub New(ByVal name As String)
  EnsureValidName(Name) ' throws if null, empty, or bad
 Name = name
End Sub
Notice that there is no code inside the default constructor. The application will never call it. It exists only to support
reconsitution of an entity during a query. Don't put anything in the default constructor unless you are sure to call it yourself.

Notice also that the default constructor is no longer public.

You can hide the default constructor
The implicit default constructor is public so DevForce and everyone else can call it. You may not want everyone to call it.

You can hide the default constructor from other assemblies but you may not hide it from DevForce. DevForce uses reflection
to find the default constructor. If the entity is to be accessible in Silverlight and you don't want the constructor to be public, you
can mark internal. You can't mark it private or protected because Silverlight won't let DevForce discover it.

Access modifier constraints are explained elsewhere in connection with entity model definition.
 

Don't add unnecessary constructor parameters
Minimize the number of constructor parameters and don't let them be optional. Use constructor parameters only for values that
absolutely must be passed in from outside.

You can set values for constrained entity properties within the constructor itself. You can set optional properties from the
outside, after constructing the instance.

http://drc.ideablade.com/devforce-2012/bin/view/Documentation/model-member-visibility

